• Title/Summary/Keyword: scientific discussion class

Search Result 42, Processing Time 0.022 seconds

A Freedom Inquiry Method by Revised Science Curriculum in 2007 (2007년 개정 과학과 교육과정에서 자유탐구 방안)

  • Lee, Yong-Seob;Park, Mi-Jin
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.3 no.1
    • /
    • pp.65-75
    • /
    • 2010
  • The purpose of this study is to present a Freedom Inquiry Method by Revised Science Curriculum in 2007. This study introduced IIM(Independent Inquiry Method), PBL(Problem Based Learning), Small Inquiry Method, Science Notebooks, Project Learning Method about Freedom Inquiry Method. The results of this study are as follows: First, IIM(Independent Inquiry Method) is studying method in the inquiry process center. The inquiry process is composed of total 9 phases, inquiry subject really it is, detailed aim deciding, information searching, it searches, quest result it arranges, aim evaluation, the report making, it announces, it evaluates, it is become accomplished. Second, It is a studying method which it starts with the problem which is Problem Based Learning, study atmosphere creation phase, problematic presentation phase and sleep static problem solving the phase which it attempts, it is become accomplished with autonomous studying phase, coordinated studying and discussion studying phase, discussion resultant announcement studying phase, arrangement and evaluation. Third, Small Inquiry Method, Call it accomplishes the call grade of the students among ourselves 4~8 people degree where only the quest learning capability is similar within class. Also interaction and coordinated function of the members between it leads and the subject which is given in the group it cooperates and it solves with it is a quest method which arrives to aim of commonness. This method divides on a large scale in three parts, it becomes accomplished in programming phase, quest accomplishment and resultant announcement. Fourth, Science Notebooks learns a scientific contents and a scientific quest function and the possibility of decreasing in order to be, from the fact that the help which it understands. This planing, data searching, it searches, becomes accomplished with resultant arrangement, announcement and evaluation. Fifth, The Project Learning Method the studying person oneself studying contents, it establishes a plan and it collects it accomplishes process of etc. it evaluates it leads and a subject and information and with real life it is a method which it studies naturally from the learning environment inside which is similar. This is preliminary phase, project start, project activity and project arrangement.

  • PDF

Changes in Problem Recognition and Perceptions of Learning Environments of Elementary Students through Inquiry Questioning Activity (탐구 질문하기 활동을 통한 초등학생의 문제 인식과 학습 환경에 대한 인식 변화)

  • Shin, Myeong-Kyeong;Kim, Hyo-Suk;Lee, Heui-Soon
    • Journal of Korean Elementary Science Education
    • /
    • v.29 no.2
    • /
    • pp.124-133
    • /
    • 2010
  • The study presents preliminary research on how science activities focusing on problem recognition worked and affected students' perception of their learning environment in a sixth science classroom. The science activities were based on the Science Writing Heuristic (SWH) which was suggested by Keys, Hand, Prain & Collins (1999), where problem recognition was an important part of scientific inquiry. For developing the working sheets for the modified SWH in this study, analyses of target units of 6th grade science curriculum in the aspects of problem recognition were conducted. After consecutive 6 classes with the developed working sheets for sixth graders, the student working sheets for each lesson were collected and analyzed. In order to investigate the developed units' affect on student learning, students' perceptions of their learning environment were administered before and after the applied classes. Students working sheets and questionnaires on their perceptions of learning environment indicated that students perceived that the science activities were more student-centered classes where students had active discussion and dialogue with one another giving them more chances to actively take part in the class as well as they used more properly recognized their inquiry problem.

  • PDF

Effectiveness of STEAM Education applying a meta-analysis (메타분석을 통한 STEAM 교육의 효과검증)

  • KIM, Ji-Won;WON, Hyo-Heon
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.5
    • /
    • pp.1517-1527
    • /
    • 2016
  • The purpose of this study was to investigate the effectiveness of integrated education research conducted in Korea and to propose a meaningful discussion for further research. Among the studies conducted for last five years, the relevant 69 research articles were selected, and 211 effect sizes were calculated. Effect sizes were analyzed with different dependent variables including creativity, problem solving ability, inquiry skills, scientific recognition, attitude, interest, motivation and self-esteem. In addition, effect sizes with different moderating variable, such as samples sizes, characteristics of subjects, class types, core disciplines were compared. The conclusions of this study was that STEAM education had a relatively middle effect size. Finally, researchers discussed the results related with previous results, and provided the implications and suggestion for future studies.

The Impact of Socio-Scientific Issue Debate about Local Environmental Problem on High School Students' Environmental Perception Change (지역환경문제에 관한 사회과학쟁점 토론이 고등학교 학생들의 환경인식 변화에 미치는 영향)

  • Yoo, Ye-jin;Nam, Younkyeong
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.13 no.3
    • /
    • pp.284-296
    • /
    • 2020
  • This study investigates the effect of SSI debate on first-year high school student's opinions about environmental issue, their judgment grounds, and solutions to regional environmental problems. The SSI debate was about white heron habitats near the village where students live. As the main data of the study, environmental perception questionnaires, and students' workbook including open-ended questions were collected before and after class. The environmental perception questionnaire was analyzed by descriptive statistics, and the response of the open-ended questions was analyzed through inductive qualitative research methods. First, the results of this study shows that the SSI debate has a statistically significant impact on students' environmental attitude. Second, a majority of students agreed on the idea that villagers should drive the birds out of town and they did not change their after the discussion class. However, after the discussion class, students' solutions about the issue were changed in a way that more short-term, feasible, concrete, and less time-consuming solutions to the problem. Based on the results of this study, this study implies that SSI issue debate using local problem should be used more often in science classroom so the students recognize local SSI and improve real world problem solving skills.

The effect of practicing the authentic open inquiry on compositions of laboratory reports (학생들의 보고서 쓰기에 대한 개방적 참탐구 활동 수행의 효과)

  • Kim, Mi-Kyung
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.8
    • /
    • pp.848-860
    • /
    • 2009
  • This study examined the characteristics of scientists' writing on the laboratory reports written in the authentic open inquiry, and explored the possibility that the class discussion after the inquiries could influence the laboratory report writing. The samples were 131 10th graders in a science high school in Seoul. The control group (n=45) practiced traditional school science inquiries, the experimental group 1 (n=43) practiced the authentic open inquiries, and the experimental group 2 (n=43) practiced the authentic open inquiries and the class discussion after the laboratory activities. Their laboratory reports were analyzed into three parts - prediction (prediction with background and apposite description), data analysis (data transformation and critical analysis), and conclusion (objective description based on evidence). The frequency of the characteristics of scientist's writing in the experimental group was higher than the control group. Particularly, the differences of the prediction with background (p<.01) and the critical analysis of data (p<.05) were statistically significant. However, the frequency of writing the conclusion based on evidence was very low in all of the three groups. The result from comparing descriptions of reports showed that the writing prediction in experimental groups were more elaborate, and the data transformation in experimental groups were more correct, and the evaluation to data in experimental groups were more critical than the control group. And the descriptions of the critical evaluation to data and the finding flaw in methods were found in experimental groups 2, indicating that the class discussion can stimulate students' scientific thinking.

Development and Application of Scientific Model Co-construction Program about Image Formation by Convex Lens (볼록렌즈가 상을 만드는 원리에 대한 과학적 모형의 사회적 구성 프로그램 개발 및 적용)

  • Park, Jeongwoo
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.5
    • /
    • pp.203-212
    • /
    • 2017
  • A scientific model refers to a conceptual system that can describe, explain, and predict a particular physical phenomenon. The co-construction of the scientific model is attracting attention as a new teaching and learning strategy in the field of science education and various studies. The evaluation and modification of models compared with the predicted models of data from the real world is the core of modeling strategy. However, there were only a limited data provided by the teacher in many studies of modeling comparing the students' predictions of their own models. Most of the students were not given the opportunity to evaluate the suitability of the model with the data in the real world. The purpose of this study was to develop a scientific model co-construction program that can evaluate the model by directly comparing the predicted models with the observed data from the real world. Through a collaborative discussion between teachers and researchers for 6 months, a 5-session scientific model co-construction program on the subject 'image formation by convex lenses' for second grade middle school students was developed. Eighty (80) students in 3 classes and a science teacher with 20 years of service from general public co-educational middle school in Gyeonggi-do participated in this 2-week program. After the class, students were asked about the helpfulness and difficulty of the class, and whether they would like to recommend this class to a friend. After the class, 95.8% of the students constructed the scientific model more than the model using the construction rule. Students had difficulties to identify principles or understand their friends, but the result showed that they could understand through model evaluation experiment. 92.5% of the students said that they would be more than willing to recommend this program to their friends. It is expected that the developed program will be applied to the school and contribute to the improvement of students' modeling ability and co-construction ability.

The Effect of Peer Discussion about Classroom Practices on Science Teachers' Teaching (수업에 대한 동료교사의 협의가 과학교사의 수업에 미치는 영향)

  • Seong, Suk-Kyoung
    • Journal of The Korean Association For Science Education
    • /
    • v.30 no.1
    • /
    • pp.107-123
    • /
    • 2010
  • This study investigated the content and the effect of peer discussion about classroom practices on their science teaching. Participants included three science teachers with chemistry backgrounds in middle and high schools. Each of them had their classes videotaped and observed the footage as well as discussed the lessons together. The teachers had six meetings on 15 recorded lessons including one meeting beforehand. Teachers' discussions were also audio-taped and the data was transcribed. Teachers extensively discussed their lessons not only in terms of instructional strategies and scientific concepts but also the curriculum organization and teaching goals. Analysis of video-recorded lessons showed that instructional strategies were changed partially, but the aspects of curriculum organization in relation to teaching goals were not changed. Analysis of the recorded data revealed that teachers recognized the problems in their science teaching and considered the practical alternative ideas suggested by peers, but teachers proposed the necessity of experience to practice in their class. The study shows that observing and discussing each other's classes is one possible way to improve the class. Implications about teaching improvement for other teachers were discussed.

Summative Evaluation of 1993, 1994 Discussion Contest of Scientific Investigation (제 1, 2회 학생 과학 공동탐구 토론대회의 종합적 평가)

  • Kim, Eun-Sook;Yoon, Hye-Gyoung
    • Journal of The Korean Association For Science Education
    • /
    • v.16 no.4
    • /
    • pp.376-388
    • /
    • 1996
  • The first and the second "Discussion Contest of Scientific Investigation" was evaluated in this study. This contest was a part of 'Korean Youth Science Festival' held in 1993 and 1994. The evaluation was based on the data collected from the middle school students of final teams, their teachers, a large number of middle school students and college students who were audience of the final competition. Questionnaires, interviews, reports of final teams, and video tape of final competition were used to collect data. The study focussed on three research questions. The first was about the preparation and the research process of students of final teams. The second was about the format and the proceeding of the Contest. The third was whether participating the Contest was useful experience for the students and the teachers of the final teams. The first area, the preparation and the research process of students, were investigated in three aspects. One was the level of cooperation, participation, support and the role of teachers. The second was the information search and experiment, and the third was the report writing. The students of the final teams from both years, had positive opinion about the cooperation, students' active involvement, and support from family and school. Students considered their teachers to be a guide or a counsellor, showing their level of active participation. On the other hand, the interview of 1993 participants showed that there were times that teachers took strong leading role. Therefore one can conclude that students took active roles most of the time while the room for improvement still exists. To search the information they need during the period of the preparation, student visited various places such as libraries, bookstores, universities, and research institutes. Their search was not limited to reading the books, although the books were primary source of information. Students also learned how to organize the information they found and considered leaning of organizing skill useful and fun. Variety of experiments was an important part of preparation and students had positive opinion about it. Understanding related theory was considered most difficult and important, while designing and building proper equipments was considered difficult but not important. This reflects the students' school experience where the equipments were all set in advance and students were asked to confirm the theories presented in the previous class hours. About the reports recording the research process, students recognize the importance and the necessity of the report but had difficulty in writing it. Their reports showed tendency to list everything they did without clear connection to the problem to be solved. Most of the reports did not record the references and some of them confused report writing with story telling. Therefore most of them need training in writing the reports. It is also desirable to describe the process of student learning when theory or mathematics that are beyond the level of middle school curriculum were used because it is part of their investigation. The second area of evaluation was about the format and the proceeding of the Contest, the problems given to students, and the process of student discussion. The format of the Contests, which consisted of four parts, presentation, refutation, debate and review, received good evaluation from students because it made students think more and gave more difficult time but was meaningful and helped to remember longer time according to students. On the other hand, students said the time given to each part of the contest was too short. The problems given to students were short and open ended to stimulate students' imagination and to offer various possible routes to the solution. This type of problem was very unfamiliar and gave a lot of difficulty to students. Student had positive opinion about the research process they experienced but did not recognize the fact that such a process was possible because of the oneness of the task. The level of the problems was rated as too difficult by teachers and college students but as appropriate by the middle school students in audience and participating students. This suggests that it is possible for student to convert the problems to be challengeable and intellectually satisfactory appropriate for their level of understanding even when the problems were difficult for middle school students. During the process of student discussion, a few problems were observed. Some problems were related to the technics of the discussion, such as inappropriate behavior for the role he/she was taking, mismatching answers to the questions. Some problems were related to thinking. For example, students thinking was off balanced toward deductive reasoning, and reasoning based on experimental data was weak. The last area of evaluation was the effect of the Contest. It was measured through the change of the attitude toward science and science classes, and willingness to attend the next Contest. According to the result of the questionnaire, no meaningful change in attitude was observed. However, through the interview several students were observed to have significant positive change in attitude while no student with negative change was observed. Most of the students participated in Contest said they would participate again or recommend their friend to participate. Most of the teachers agreed that the Contest should continue and they would recommend their colleagues or students to participate. As described above, the "Discussion Contest of Scientific Investigation", which was developed and tried as a new science contest, had positive response from participating students and teachers, and the audience. Two among the list of results especially demonstrated that the goal of the Contest, "active and cooperative science learning experience", was reached. One is the fact that students recognized the experience of cooperation, discussion, information search, variety of experiments to be fun and valuable. The other is the fact that the students recognized the format of the contest consisting of presentation, refutation, discussion and review, required more thinking and was challenging, but was more meaningful. Despite a few problems such as, unfamiliarity with the technics of discussion, weakness in inductive and/or experiment based reasoning, and difficulty in report writing, The Contest demonstrated the possibility of new science learning environment and science contest by offering the chance to challenge open tasks by utilizing student science knowledge and ability to inquire and to discuss rationally and critically with other students.

  • PDF

The Effects of Utilizing Discussions and Debates in Science Laboratory Classes on Science Learning Motivation, Science Process Skills, and Science Academic Achievement (토의·토론을 활용한 과학 실험 수업이 과학학습동기, 과학탐구능력 및 과학 학업성취도에 미치는 효과)

  • Uhm, Janghee;Bae, Jinho
    • Journal of Korean Elementary Science Education
    • /
    • v.37 no.2
    • /
    • pp.110-125
    • /
    • 2018
  • The purpose of the study was to explore the effect of using discussions and debates in science laboratory classes on science learning motivation, science process skills, and science academic achievement. Participants in this study were 6th grade students at an elementary school. Students in the experimental group participated in science laboratory classes using discussions and debates while students in the comparative group participated in common laboratory classes with a teacher-directed approach. The results of this study are as follows: by using discussions and debates in science laboratory classes, there were statistically positive effects on the students' science learning motivation and science process skills. However, there was no statistically significant difference in science academic achievement by using discussions and debates. Even so, in the narrative survey of the students'reactions after the class, students in the experimental group responded that it was much easier to understand the meaning of the scientific concepts when they used discussions and debates. Therefore, there is a need to investigate how to use discussions and debates effectively by introducing them at different time or in different ways, rather than considering that discussions and debates have no effect on science achievement. These findings provide science teachers and researchers pedagogical implications about utilizing discussions and debates in science classes.

Development and application of TPACK based STEAM program - Focused on the excretory organs in the 'structure and function of our body' unit - (TPACK 기반 융합프로그램 개발 및 적용 - '우리 몸의 구조와 기능' 단원 중 배설 기관을 중심으로 -)

  • Ko, Dong Guk;Hong, Seung-Ho
    • Journal of Korean Elementary Science Education
    • /
    • v.40 no.4
    • /
    • pp.443-459
    • /
    • 2021
  • In this study, a TPACK-based STEAM program was developed and applied under the theme of excretory organs in the 'Structure and Function of Our Body' of the elementary science curriculum. The program was produced and conducted through curriculum analysis and learning goal detailing, learning environment analysis, teaching·learning method and technology selection, TPACK elements arrangement and teaching·learning material development, application and effectiveness verification. Teacher's TPACK considered in STEAM program design process is content knowledge (appearance and work of excretory organs), pedagogical knowledge (STEAM, problem-based learning, research learning, discussion learning, cooperative learning, scientific writing) and technology knowledge (3D printer and smart device application technology). The program consisted of a total of 8 hours of project learning activities and was applied to 29 students in the fifth grade as an experimental group. A program of the same theme developed mainly from textbooks was applied to 27 students in the fifth grade of a comparison group. As a result of the application of the program, the experimental group showed significant improvement in creative problem-solving ability and scientific attitude compared to the comparison group, and the class satisfaction with the STEAM program was also high. However, there was no significant difference in academic achievement ability.