• Title/Summary/Keyword: science gifted education program

Search Result 279, Processing Time 0.027 seconds

Analysis of the Cognitive Level of Meta-modeling Knowledge Components of Science Gifted Students Through Modeling Practice (모델링 실천을 통한 과학 영재학생들의 메타모델링 지식 구성요소별 인식수준 분석)

  • Kihyang, Kim;Seoung-Hey, Paik
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.1
    • /
    • pp.42-53
    • /
    • 2023
  • The purpose of this study is to obtain basic data for constructing a modeling practice program integrated with meta-modeling knowledge by analyzing the cognition level for each meta-modeling knowledge components through modeling practice in the context of the chemistry discipline content. A chemistry teacher conducted inquiry-based modeling practice including anomalous phenomena for 16 students in the second year of a science gifted school, and in order to analyze the cognition level for each of the three meta-modeling knowledge components such as model variability, model multiplicity, and modeling process, the inquiry notes recorded by the students and observation note recorded by the researcher were used for analysis. The recognition level was classified from 0 to 3 levels. As a result of the analysis, it was found that the cognition level of the modeling process was the highest and the cognition level of the multiplicity of the model was the lowest. The cause of the low recognitive level of model variability is closely related to students' perception of conceptual models as objective facts. The cause of the low cognitive level of model multiplicity has to do with the belief that there can only be one correct model for a given phenomenon. Students elaborated conceptual models using symbolic models such as chemical symbols, but lacked recognition of the importance of data interpretation affecting the entire modeling process. It is necessary to introduce preliminary activities that can explicitly guide the nature of the model, and guide the importance of data interpretation through specific examples. Training to consider and verify the acceptability of the proposed model from a different point of view than mine should be done through a modeling practice program.

The Recognition Characteristics of Science Gifted Students on the Earth System based on their Thinking Style (과학 영재 학생들의 사고양식에 따른 지구시스템에 대한 인지 특성)

  • Lee, Hyonyong;Kim, Seung-Hwan
    • Journal of Science Education
    • /
    • v.33 no.1
    • /
    • pp.12-30
    • /
    • 2009
  • The purpose of this study was to analyze recognition characteristics of science gifted students on the earth system based on their thinking style. The subjects were 24 science gifted students at the Science Institute for Gifted Students of a university located in metropolitan city in Korea. The students' thinking styles were firstly examined on the basis of the Sternberg's theory of mental self-government. And then, the students were divided into two groups: Type I group(legislative, judicial, global, liberal) and Type II group(executive, local, conservative) based on Sternberg's theory. Data was collected from three different type of questionnaires(A, B, C types), interview, word association method, drawing analyses, concept map, hidden dimension inventory, and in-depth interviews. The findings of analysis indicated that their thinking styles were characterized by 'Legislative', 'Executive', 'Anarchic', 'Global', 'External', 'Liberal' styles. Their preference were conducting new projects and using creative problem solving processes. The results of students' recognition characteristics on earth system were as follows: First, though the two groups' quantitative value on 'System Understanding' was very similar, there were considerable distinctions in details. Second, 'Understanding the Relationship in the System' was closely connected to thinking styles. Type I group was more advantageous with multiple, dynamic, and recursive approach. Third, in the relation to 'System Generalization' both of the groups had similar simple interpretational ability of the system, but Type I group was better on generalization when 'hidden dimension inventory' factor was added. On the system prediction factor, however, students' ability was weak regardless of the type. Consequently, more specific development strategies on various objects are needed for the development and application of the system learning program. Furthermore, it is expected that this study could be practically and effectively used on various fields related to system recognition.

  • PDF

North Korean Defector Students' Science Learning in Angbuilgu Activity (앙부일구(仰釜日晷) 활동에서 드러난 탈북 학생들의 과학 학습)

  • Lee, Ji-Hye;Shin, Dong-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.1
    • /
    • pp.1-14
    • /
    • 2015
  • The purpose of this study is to examine North Korean defector students' characteristics in science learning through their voice in an "Angbuilgu" program, one of the Korean traditional science knowledge (TSK). We compared them with two other groups of contrasting backgrounds. The Angbuilgu program contains meaningful questions of time, everyday-life knowledge, Korean TSK, and western modern science (WMS). The teaching strategy consists of interactions between teacher and students, and scientific experiments. We applied this program to three groups and analyzed: North Korean defector students, elementary science gifted students, high school students in an advanced class. The characteristics of their science learning show the following: First, their interpretation of time as nature itself in their everyday life. They have rich experience and are familiar with time in nature. Second, they prefer science with complementary, caring, and humanist perspectives, which is in contrast to other groups with preference to the updated and practical science. Third, they lack scientific concepts but possess an abundance of everyday-life knowledge. Their linguistic expressions are ordinary rather than scientific. Fourth, they are familiar with narrative thinking more than scientific thinking. The results show that the science program using Korean TSK can help them accept new scientific knowledge as well as cultural pride, which plays a role in reconfirming their identity as one ethnicity. We expect that the contents of Korean TSK can be an intercultural field between North Korean defector students and our science curriculum.

An Analysis of Ecological Factors Affecting Student-Life Satisfaction in Korea Science Academy (한국과학영재학교 학생의 학교생활만족도: 생태학적 접근)

  • Kim, Ae-Hee;Yoon, Chong-Hee
    • Journal of the Korean Home Economics Association
    • /
    • v.48 no.2
    • /
    • pp.51-62
    • /
    • 2010
  • The primary purpose of this study was to employ an ecological model to analyze relative magnitudes of significant predictors affecting school life satisfaction in Korea Science Academy. The instruments used for this study were school life satisfaction Scale, Self-Efficacy Scale, Relationship Skill Scale, Internal Control Scale, Emotional Intelligence Scale, and FACE IV Scale. Data were collected by purposive sampling of 180 students of the Korea Science Academy in Busan, Korea. The data were analyzed by frequency, percentile, mean, standard deviation, Cronbach' ${\alpha}$, Pearson's productive correlation, hierarchical regression and stepwise regression, using SPSS 15.0+WIN program package. The results were as follows: 1. The level of school life satisfaction in Korea Science Academy was found to be high(Mean = 4.24, SD = 0.57). 2. Model IV was the most powerful. It explained 49.7% of the school life satisfaction. 3. Relationship with friends(${\beta}$ = .443), with teachers(${\beta}$ = .273), and self-efficacy(${\beta}$ = .201) were significant factors in explaining the school life satisfaction. The three variables explained 49.9% of school life satisfaction.

Exploring Science Classes and Science Teachers of New York Using Professional Teaching Standards by Korean Teachers

  • Yu, Eun-Jeong;Kim, Kahye;Kim, Myong-Hi
    • Journal of the Korean earth science society
    • /
    • v.34 no.5
    • /
    • pp.435-449
    • /
    • 2013
  • The purpose of this study was to investigate the difference of teachers' interaction with their students when teaching science in New York (NY) and in Korea. As part of the 2011 Korean International Teacher Fellows (KITF), supported by the Ministry of Education, Science and Technology (MEST) and the National Institute for International Education Development (NIIED), Korean science teachers observed, for six months, New York's science classes in terms of how teachers interact with their students and how students learn science during science instruction. The participants were 10 science teachers in five middle and high schools that taught Physics, Chemistry, Biology, Earth Science, and Environment Science in NY. The National Board for Professional Teaching Standards (NBPTS, 2003) and Instruction as Interaction (Cohen et al., 2003) were used as an instrument to identify each teacher's teaching and classroom interaction. Several characteristics of science classes in NY were revealed, which are different from Korean science classes. First, science teachers in NY dominantly put more focus on their subject of teaching during science interaction while, Korean science teachers not only teach science but also do counseling to students as a homeroom teacher. Second, science teachers in NY acknowledged the students' individuality and have positive experiences of professional development supported by their school and district more than Korean science teachers do. Third, science teachers in NY sometimes showed limited knowledge about the concepts of science and lack of collaboration with other science teachers. This characteristics may prevent the school from strengthening its subject program and keeping equity across the grade levels and courses.

Analysis of the Scientific Research Process of a Participant in Undergraduate Research Program by Cultural Historical Activity Theory (문화역사적 활동이론을 통한 학부생 연구지원 프로그램 참여자의 과학연구 수행과정의 분석)

  • Lee, Jiwon
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.3
    • /
    • pp.343-354
    • /
    • 2018
  • In this study, the first experience of the whole research process of a novice scientist (student A) who participated in the Undergraduate Research Program (URP) was analyzed. The data were collected through observation, interviews, and document analysis with the cultural historical activity theory being used as a theoretical lens. At the beginning of novice's research, the mentor guided him in setting a research goal and provided mediating artifacts. Student A formed a research team based on the vertical relationship without a shared mental model. Two major contradictions occurred and they were the sources of changes of student A's activity system. The first contradiction was between the mentor's educational philosophy and the mentee's educational needs, which was resolved in a way that student A asked and used the mentor's network to obtain his needs about task-specific details. The second contradiction arose because the team members wanted horizontal relationship while student A wanted to stick to the vertical relationship. After student A accepted the opinions of the team members, they cooperatively changed the division of labor in the activity system. Student A decided to become a scientist and not a physics teacher, even if his major is physics education after finishing his URP research process. His URP experience also created and expanded his network in the academic field, and his negative attitude toward collaboration changed positively. Through the analysis of the structure and changes in the activity system of URP research, implications for instructional method and support system of the apprenticeship can be obtained.

Comparison of Components of Self-directed Learning Discribed in the Students' Evaluation of Explicit Instruction and Implicit Instruction Regarding Self-directed Learning (자기주도학습의 명시적 수업과 암묵적 수업에 대한 과학영재중학생의 평가에서 관찰되는 자기주도학습 요소 비교)

  • Choe, Seung-Urn;Kim, Eun-Sook
    • Journal of Gifted/Talented Education
    • /
    • v.23 no.6
    • /
    • pp.1077-1098
    • /
    • 2013
  • Science gifted students enrolled in a program, where classes had either explicit or implicit instruction about self-directed learning, were asked to write what was satisfying after each class. This process was part of the evaluation of the program. Students' descriptions related to self-directed learning are compared in these two classes, one with explicit instruction and the other with implicit instruction. First, most of the components related to self-directed learning, which were reported in the previous research articles, were mentioned in students evaluation. If there was any specific description regarding what was satisfying, there were components of self-directed learning. Students descriptions were consistent with list of self-directed learning components, which was constructed based on the previous research. Therefore it may be concluded that students recognized most of the reported self-directed learning components and satisfied with them. Second, There were differences in the evaluation of two types of classes. The evaluation of class with explicit instruction contained more self-directed learning components more frequently. For example, students worked in small groups in both classes. However more students mentioned small groups in classes with explicit instruction. As a result the explicit instruction appears to be more effective for students to recognize the self-directed learning components. However some of the components mentioned in classes with implicit instruction were not mentioned in the classes with explicit instruction. Therefore classes with explicit and implicit instructions are complimentary with each other and both instructions are necessary.

Development of Convergence Education (STEAM) Program for High School Credit System (고교학점제를 위한 융합교육(STEAM) 프로그램 개발)

  • Kwon, Hyuksoo;Kim, Eojin;Kim, Jaewoon;Min, JaeSik;Bae, SangIl;Son, MiHyun;Lee, Hyonyong;Choi, JinYoung;Han, MiYoung;Ham, HyungIn
    • Journal of Science Education
    • /
    • v.46 no.1
    • /
    • pp.93-108
    • /
    • 2022
  • The purpose of this study is to develop a STEAM program that can be used in the high school credit system to be fully implemented in 2025, and to examine its validity and effectiveness. The STEAM program analyzed the 2015 revised curriculum centering on science, technology, and engineering through the 2015 revised curriculum analysis, and then selected the five latest issues: hydrogen fuel, climate crisis, data science, appropriate technology, and barista. In accordance with this self-developed program development format (frame), it was developed for seven months through a process of group deliberation. The draft of the STEAM program for 29 sessions of five types, developed to indirectly experience the career path and occupation of high school students, was verified through consultation with 2 STEAM education experts. It was applied at five different high schools for a pilot implementation. As a result of the pilot application, it was confirmed that the students' STEAM attitude significantly improved in the post-test than the pre-test, and the students' high satisfaction with the program was confirmed. In addition, through an interview with the pilot application teacher, it was positively evaluated that 'the content and level of the program are suitable and through experience solving real-life problems, you can apply the content knowledge of related subjects and have an opportunity to experience careers.' Based on the results of the pilot application, the high school credit system STEAM program for students and teachers was finally completed in 29 lessons of five types. Through this study, the development and operation of the next-generation STEAM program that can be applied in the high school credit system should be actively developed, and a plan to improve teachers' professionalism so that the high school credit system can be established and operated properly for blended classes triggered by COVID-19. The necessity of design was suggested. This study is expected to be used as basic data for the development and operation of STEAM programs in the high school credit system, which will be fully implemented in 2025.

The Development of Rubrics to Assess Scientific Argumentation (과학적 논증과정 평가를 위한 루브릭 개발)

  • Yang, Il-Ho;Lee, Hyo-Jeong;Lee, Hyo-Nyong;Cho, Hyun-Jun
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.2
    • /
    • pp.203-220
    • /
    • 2009
  • The purpose of this study was to develop a rubric for assessing students' scientific argumentation. Through the analysis of relevant literature related to argument in science education for developing rubric, the procedure in development and the category in assessment for rubric were elicited. According to the general procedure in developing rubric, the standard for evaluating the argumentation derived three categories such as a form, contents, and attitude. The form category was further segmented into sub-functions composition, claim, ground, and conclusion in the whole. The category for contents was segmented into sub-functions understanding, credibility, and inference. And the category for attitude was set to sub-functions participatory level and openness. The standard for evaluating sub-functions in each of the categories formed in this way was minutely suggested with five stages. The rubric, which was developed on the basis of literature, was inspected through a regular seminar in one expert in science education and fellow researchers. The rubric, which was developed in the early days, was again modified by being verified on problem and improvement matter after being entrusted to four experts in scientific education. And, the finally-completed rubric indicated to be high with 0.96 in the content validity index by being verified the validity by the four experts in science education. The developed rubric will lead to being able to increase the understanding about demonstration in students, and to being available for being utilized as the criteria for developing the argumentation process program and for evaluating the argumentation activity.

A Study on e-PBL System for Improvement of Self-Directed Learning Ability (자기주도적 학습능력 향상을 위한 e-PBL 시스템 연구)

  • Seo, Seong-Won;Kim, Eui-Jeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.6
    • /
    • pp.1471-1476
    • /
    • 2013
  • This research examines how PBL(Problem-based Learning; PBL) system affects to 'Self-directed learning ability', by developing and applying it to the participants of "Science Cyber Conference" - the web based on-line debating learning program - among those students of the Affiliated Institute of Science gifted education of K University, for 16weeks. With this, also the cognizance of learners for the PBL class process are looked into together. After conducting the program applied with the web-based PBL strategy, the participants 'Self-directed learning ability' showed the remarkable change statistically (p<.05). Especially it showed the meaningful changes in six sections (p<.05), among those subdivided seven sections of 'Self-directed learning ability', with the one exception, 'Self-confidence as a Learner'. They also showed the positive response to the class which adopted the web-based PBL strategy.