• Title/Summary/Keyword: school mathematics curriculum

Search Result 1,203, Processing Time 0.023 seconds

FACTORS INFLUENCING STUDENTS' PREFERENCES ON EMPIRICAL AND DEDUCTIVE PROOFS IN GEOMETRY (중학생의 경험적 증명과 연역적 증명에 대한 선호 요인 분석)

  • Park, Gwi-Hee;Yoon, Hyun-Kyoung;Cho, Ji-Young;Jung, Jae-Hoon;Kwon, Oh-Nam
    • Communications of Mathematical Education
    • /
    • v.24 no.2
    • /
    • pp.325-344
    • /
    • 2010
  • The purpose of this study is to investigate what influences students' preferences on empirical and deductive proofs and find their relations. Although empirical and deductive proofs have been seen as a significant aspect of school mathematics, literatures have indicated that students tend to have a preference for empirical proof when they are convinced a mathematical statement. Several studies highlighted students'views about empirical and deductive proof. However, there are few attempts to find the relations of their views about these two proofs. The study was conducted to 47 students in 7~9 grades in the transition from empirical proof to deductive proof according to their mathematics curriculum. The data was collected on the written questionnaire asking students to choose one between empirical and deductive proofs in verifying that the sum of angles in any triangles is $180^{\circ}$. Further, they were asked to provide explanations for their preferences. Students' responses were coded and these codes were categorized to find the relations. As a result, students' responses could be categorized by 3 factors; accuracy of measurement, representative of triangles, and mathematics principles. First, the preferences on empirical proof were derived from considering the measurement as an accurate method, while conceiving the possibility of errors in measurement derived the preferences on deductive proof. Second, a number of students thought that verifying the statement for three different types of triangles -acute, right, obtuse triangles - in empirical proof was enough to convince the statement, while other students regarded these different types of triangles merely as partial examples of triangles and so they preferred deductive proof. Finally, students preferring empirical proof thought that using mathematical principles such as the properties of alternate or corresponding angles made proof more difficult to understand. Students preferring deductive proof, on the other hand, explained roles of these mathematical principles as verification, explanation, and application to other problems. The results indicated that students' preferences were due to their different perceptions of these common factors.

A Case Study on Students' Mathematical Concepts of Algebra, Connections and Attitudes toward Mathematics in a CAS Environment (CAS 그래핑 계산기를 활용한 수학 수업에 관한 사례 연구)

  • Park, Hui-Jeong;Kim, Kyung-Mi;Whang, Woo-Hyung
    • Communications of Mathematical Education
    • /
    • v.25 no.2
    • /
    • pp.403-430
    • /
    • 2011
  • The purpose of the study was to investigate how the use of graphing calculators influence on forming students' mathematical concept of algebra, students' mathematical connection, and attitude toward mathematics. First, graphing calculators give instant feedback to students as they make students compare their written answers with the results, which helps students learn equations and linear inequalities for themselves. In respect of quadratic inequalities they help students to correct wrong concepts and understand fundamental concepts, and with regard to functions students can draw graphs more easily using graphing calculators, which means that the difficulty of drawing graphs can not be hindrance to student's learning functions. Moreover students could understand functions intuitively by using graphing calculators and explored math problems volunteerly. As a result, students were able to perceive faster the concepts of functions that they considered difficult and remain the concepts in their mind for a long time. Second, most of students could not think of connection among equations, equalities and functions. However, they could understand the connection among equations, equalities and functions more easily. Additionally students could focus on changing the real life into the algebraic expression by modeling without the fear of calculating, which made students relieve the burden of calculating and realize the usefulness of mathematics through the experience of solving the real-life problems. Third, we identified the change of six students' attitude through preliminary and an ex post facto attitude test. Five of six students came to have positive attitude toward mathematics, but only one student came to have negative attitude. However, all of the students showed positive attitude toward using graphing calculators in math class. That's because they could have more interest in mathematics by the strengthened and visualization of graphing calculators which helped them understand difficult algebraic concepts, which gave them a sense of achievement. Also, students could relieve the burden of calculating and have confidence. In a conclusion, using graphing calculators in algebra and function class has many advantages : formulating mathematics concepts, mathematical connection, and enhancing positive attitude toward mathematics. Therefore we need more research of the effect of using calculators, practical classroom materials, instruction models and assessment tools for graphing calculators. Lastly We need to make the classroom environment more adequate for using graphing calculators in math classes.

A Comparison on the Relations between Affective Characteristics and Mathematical Reasoning Ability of Elementary Mathematically Gifted Students and Non-gifted Students (초등 수학영재와 일반학생의 정의적 특성과 수학적 추론 능력과의 관계 비교)

  • Bae, Ji Hyun;Ryu, Sung Rim
    • Education of Primary School Mathematics
    • /
    • v.19 no.2
    • /
    • pp.161-175
    • /
    • 2016
  • The purpose of this study is to measure the differences in affective characteristics and mathematical reasoning ability between gifted students and non-gifted students. This study compares and analyzes on the relations between the affective characteristics and mathematical reasoning ability. The study subjects are comprised of 97 gifted fifth grade students and 144 non-gifted fifth grade students. The criterion is based on the questionnaire of the affective characteristics and mathematical reasoning ability. To analyze the data, t-test and multiple regression analysis were adopted. The conclusions of the study are synthetically summarized as follows. First, the mathematically gifted students show a positive response to subelement of the affective characteristics, self-conception, attitude, interest, study habits. As a result of analysis of correlation between the affective characteristic and mathematical reasoning ability, the study found a positive correlation between self-conception, attitude, interest, study habits but a negative correlation with mathematical anxieties. Therefore the more an affective characteristics are positive, the higher the mathematical reasoning ability are built. These results show the mathematically gifted students should be educated to be positive and self-confident. Second, the mathematically gifted students was influenced with mathematical anxieties to mathematical reasoning ability. Therefore we seek for solution to reduce mathematical anxieties to improve to the mathematical reasoning ability. Third, the non-gifted students that are influenced of interest of the affective characteristics will improve mathematical reasoning ability, if we make the methods to be interested math curriculum.

A Comparison of Mathematically Gifted and Non-gifted Elementary Fifth Grade Students Based on Probability Judgments (초등학교 5학년 수학영재와 일반아의 확률판단 비교)

  • Choi, Byoung-Hoon;Lee, Kyung-Hwa
    • Journal of Educational Research in Mathematics
    • /
    • v.17 no.2
    • /
    • pp.179-199
    • /
    • 2007
  • The purpose of this study was to discover differences between mathematically gifted students (MGS) and non-gifted students (NGS) when making probability judgments. For this purpose, the following research questions were selected: 1. How do MGS differ from NGS when making probability judgments(answer correctness, answer confidence)? 2. When tackling probability problems, what effect do differences in probability judgment factors have? To solve these research questions, this study employed a survey and interview type investigation. A probability test program was developed to investigate the first research question, and the second research question was addressed by interviews regarding the Program. Analysis of collected data revealed the following results. First, both MGS and NGS justified their answers using six probability judgment factors: mathematical knowledge, use of logical reasoning, experience, phenomenon of chance, intuition, and problem understanding ability. Second, MGS produced more correct answers than NGS, and MGS also had higher confidence that answers were right. Third, in case of MGS, mathematical knowledge and logical reasoning usage were the main factors of probability judgment, but the main factors for NGS were use of logical reasoning, phenomenon of chance and intuition. From findings the following conclusions were obtained. First, MGS employ different factors from NGS when making probability judgments. This suggests that MGS may be more intellectual than NGS, because MGS could easily adopt probability subject matter, something not learnt until later in school, into their mathematical schemata. Second, probability learning could be taught earlier than the current elementary curriculum requires. Lastly, NGS need reassurance from educators that they can understand and accumulate mathematical reasoning.

  • PDF

Analysis of students' understanding of equal sign through equal sign introduction lessons emphasizing their relational understanding (등호 도입 단원에서 관계적 이해를 강조한 수업에 따른 학생들의 이해 분석)

  • Lee, Yujin
    • Education of Primary School Mathematics
    • /
    • v.27 no.1
    • /
    • pp.39-55
    • /
    • 2024
  • Recently, the 2022 revised mathematics curriculum has established achievement standards for equal sign and equality, and efforts have been made to examine teaching methods and student understanding of relational understanding of equal sign. In this context, this study conducted a lesson that emphasized relational understanding in an introduction to equal sign, and compared and analyzed the understanding of equal sign between the experimental group, which participated in the lesson emphasizing relational understanding and the control group, which participated in the standard lesson. For this purpose, two classes of students participated in this study, and the results were analyzed by administering pre- and post-tests on the understanding of equal sign. The results showed that students in the experimental group had significantly higher average scores than students in the control group in all areas of equation-structure, equal sign-definition, and equation-solving. In addition, when comparing the means of students by item, we found that there was a significant difference between the means of the control group and the experimental group in the items dealing with equal sign in the structure of 'a=b' and 'a+b=c+d', and that most of the students in the experimental group correctly answered 'sameness' as the meaning of equal sign, but there were still many responses that interpreted the equal sign as 'answer'. Based on these results, we discussed the implications for instruction that emphasizes relational understanding in equal sign introduction lessons.

A Comparative Study of Actuality of Elementary and Middle School Teachers' Perception on Cyber Home Learning System (사이버 가정학습체제에 대한 초중등 교사의 인식실태 비교연구)

  • Jung, Ju-Young;Kim, Hyang-Sook
    • Journal of The Korean Association of Information Education
    • /
    • v.11 no.3
    • /
    • pp.339-347
    • /
    • 2007
  • Along with developments of information and communication technologies, internet has spread not only all over the society, but also our everyday life deeply. Recently, requirements for e-learning using internet in the educational aspect have a great influence on the changes of school educations. Cyber Home Learning System, in particular, has been implemented throughout the nation for the purpose of reducing private expenditure for education and promoting substantial improvements in quality of public education. However, there have been exposed many problems with respect to quality of operations and managements of the system comparing to its quantitative growth, and so, at this point in time, researcher conducted analysis of actuality of perceptions of both elementary and middle school teachers with a focus on the case of S System in K province. To test this, total 278 participants were sampled from the elementary schools (139 teachers) and the middle schools (139 teachers) located in K province and were asked to complete a survey and the results therefrom were analyzed accordingly. Results from the analyses revealed that elementary school teachers responded more positively than other respondents in the most areas, including supply of a variety of learning contents of S System, quality of contents, and providing for helps insomuch as to complement school works, etcetera. In addition, researcher has found out that, to make the system become all the more efficient, it shall be required to establish a strategy in order to induce students' interest in the system, as well as to construct infrastructure for facilitating the use of computer. And that there are also needs for continuous supports from both the school and the education authority concerned, and for method of flexible operation of curriculum.

  • PDF

An Analysis of Problem Posing in the 5th and 6th Grade Mathematics Textbooks and Errors in Problem Posing of 6th Graders (5, 6학년 수학교재의 문제만들기 내용 및 6학년 학생들의 문제만들기에서의 오류 분석)

  • Kim, Gyeong Tak;Ryu, Sung Rim
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.17 no.2
    • /
    • pp.321-350
    • /
    • 2013
  • The purpose of this study to analysis of problem posing in 5th and 6th grade mathematics textbooks and to comprehend errors in the problem posing activity of 6th graders in elementary school. For solving the research problems, problem posing contents were extracted from mathematics textbooks and practice books for the 5th and 6th grade of elementary school in the 2007 revised national curriculum, and they were analyzed, according to each grade, domain and type. Based on the analysis results, 10 problem posing questions which were extracted and developed, were modified and supplemented through a pre-examination, and a questionnaire that problem posing questions are evenly distributed, according to each grade, domain and type, was produced. This examination was conducted with 129 6th graders, and types of error in problem posing were analyzed using collected data. The implications from the research results are as follows. First, it was found that there was a big numerical difference of problem posing questions in the 5th and 6th grade, and problem posing questions weren't properly suggested in even some domains and types, because the serious concentration in each grade, type and domain. Therefore, textbooks to be developed in the future would need to suggest more various and systematic of problem posing teaching learning activity for each domain and type. Second, the 'error resulting from the lack of information' occurred the most in the problems that 6th graders posed, followed by the 'error in the understanding of problems', 'technical errors', 'logical errors' and 'others'. This implies that a majority of students missed conditions necessary for problem solving, because they have been used to finding answers to given questions only. For such reason, there should be an environment in which students can pose problems by themselves, breaking from the way of learning to only solve given problems.

  • PDF

Error Analysis of 6th Grade Elementary Students in Problem Solving in the Measurement Domain (측정 영역의 문제해결 과정에서 나타나는 초등학교 6학년 학생의 오류 분석)

  • Kim, Seong-Kyeong
    • Journal of Science Education
    • /
    • v.41 no.3
    • /
    • pp.480-498
    • /
    • 2017
  • This study analyzed the errors of 6th graders of elementary school in problem solving process of the measurement domain. By analyzing the errors that students make in solving difficult problems, this study tried to draw implications for teaching and learning that can help students reach their achievement standards. First, though the students were given enough time to deal with problems, the fact that about 30~60% of students, based upon the problems given, can't solve them show that they are struggling with a part of measurement domain. Second, it was confirmed that students' understanding of the unit of measurement, such as relationship between units, was low. Third, the students have a low understanding in terms of the fact that once the base is set in a triangle then the height can be set accordingly and from which multiple expressions, in obtaining the area of the triangle, can be driven.

The Development and Application of Elementary Science Convergence Program using Anamorphic Optical Illusion Art (아나모픽 착시예술을 활용한 초등 과학 융합 프로그램 개발 및 적용)

  • Ahn, Jaehong;Kwon, Nanjoo
    • Journal of Korean Elementary Science Education
    • /
    • v.34 no.2
    • /
    • pp.224-237
    • /
    • 2015
  • In this study, in regard to the change of the paradigm to STEAM (Science, Technology, Engineering, Arts, and Mathematics), we have looked into the ways to apply scientific inquiry through the arts, discussed the educational implications for the ways to step forth with the science and the arts in educational field. In the development of the strategies related to the optical illusion arts, to make sure that the design-oriented science education to reach its goal to make effective teaching, students need to be understood in the method of the artistic designs. Totally it had two rounds for inspection about operation of the convergence with curriculum. As a result, students changed attitude to concentrate in class naturally while doing their art work, participating in person rather than simply looking. It is caused by the scientific approach to strategy of illusion arts. In addition, we could see that students change into a proactive manner as well as teachers comments that they are communicate and make a complete the work with others. A lot of researches give that science can provide the ideas as a method to arts, arts can provide creative ideas to science, but it is still lacking that research can be applied to education specifically on how to. An efforts in the number of collaborative research will continue to introduce, as this study STEAM of science and arts in the field of education be shifted paradigm.

The Development of the Components of the Length Measurement Concept in the Procedure of Measurement Using a Ruler

  • Antic, Milica D.;Dokic, Olivera J.
    • Research in Mathematical Education
    • /
    • v.22 no.4
    • /
    • pp.261-282
    • /
    • 2019
  • The research related to testing pupils' achievement in the field of Measurement and Measure in initial teaching of geometry points to an insufficient adoption of the basic components of the length measurement concept among pupils. In order to discover the cause, we looked at the basic components on which the procedure of measuring length using a ruler is based, highlighted the possibilities of introducing the procedure in measuring length, and determined pupils' achievement during the procedure of measuring length using a ruler. The research sample consisted of 145 pupils, out of which 72 were the 2nd grade pupils and 73 were the 4th grade pupils. A descriptive method was applied in the research. The technique we used was testing, and for the statistical data processing we used a χ2 test. The results of the research show that, when drawing a straight line of a given length using a ruler, there is no statistical difference in achievement between the 2nd and 4th grade pupils, nor in the pupils' knowledge regarding drawing a ruler independently, while drawing a straight line of a given length using a "broken" ruler 4th grade pupils are statistically better. The results of the research indicate that pupils' achievement is better in doing standard tasks than in non-standard ones, given that the latter require conceptual knowledge. The components of the concept of length measurement using ruler have not been sufficiently developed yet, and these include: zero-point, partitioning a measured object in a series of consecutive measurement units and their iteration. We shed more light on the critical stage in the procedure of length measurement - the transition from non-standard to standard units and the formation of the length measurement scale. For further research, we propose to look at the formation of the concept of length measurement using the ruler through all its components and their inclusion in the mathematics curriculum, as well as examining the correlation of pupils' achievement in the procedure of measuring length with their achievement in measuring area (and volume).