• Title/Summary/Keyword: school bonding

Search Result 893, Processing Time 0.028 seconds

Characterization and observation of Cu-Cu Thermo-Compression Bonding using 4-point bending test system (4-point bending test system을 이용한 Cu-Cu 열 압착 접합 특성 평가)

  • Kim, Jae-Won;Kim, Kwang-Seop;Lee, Hak-Joo;Kim, Hee-Yeon;Park, Young-Bae;Hyun, Seung-Min
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.4
    • /
    • pp.11-18
    • /
    • 2011
  • The quantitative interfacial adhesion energy of the Cu-Cu direct bonding layers was evaluated in terms of the bonding temperature and Ar+$H_2$ plasma treatment on Cu surface by using a 4-point bending test. The interfacial adhesion energy and bonding quality depend on increased bonding temperature and post-annealing temperature. With increasing bonding temperature from $250^{\circ}C$ to $350^{\circ}C$, the interfacial adhesion energy increase from $1.38{\pm}1.06$ $J/m^2$ to $10.36{\pm}1.01$ $J/m^2$. The Ar+$H_2$ plasma treatment on Cu surface drastically increase the interfacial adhesion energy form $1.38{\pm}1.06$ $J/m^2$ to $6.59{\pm}0.03$ $J/m^2$. The plasma pre-treatment successfully reduces processing temperature of Cu to Cu direct bonding.

Combined Effect of Fireproofing Gypsum Board on Residual Strength and Fire Resistance of Fiber Addition High Strength Concrete-Model Column (방화석고보드 부착이 섬유혼입 고강도 콘크리트 모의 기둥부재의 내화특성 및 잔존내력에 미치는 영향)

  • Yang, Seong-Hwan
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.4
    • /
    • pp.442-450
    • /
    • 2012
  • In this study, fire resistance and residual strength were examined after the addition of PF fiber and bonding fireproofing gypsum board to a high strength concrete-model column of 50 MPa grade. At the beginning of the experiment, all the properties of base concrete appeared to satisfy the target range. In terms of the internal temperature record, a trend of slightly high temperature was shown when the fireproofing gypsum board was not bonding, and when the fireproofing gypsum board was bonding, as PF content increased gradually, the temperature was gradually lowered. In terms of the relationship, as time elapsed a low temperature was shown when fiber was mixed, and when the board was bonding, the trend of lower temperature could be confirmed. Meanwhile, in terms of spalling property, a severe explosive fracture was generated at PF 0%, and falling off was prevented as the fiber content was increased; however, discoloration and a multitude of cracks were discovered, and when the board was bonding, the trend in which the exterior became satisfactory when the content was increased emerged. In terms of the residual compressive strength, measuring of strength could not be performed at PF 0% without bonding of board, and the strength was increased as the fiber content was increased; however, there was a decrease in strength of about 30 ~ 40%, and in the case of PF 0% with the bonding of board, the strength could be measured; however, about an 80% decrease in strength was shown, and only about a 10 ~ 20% decline in strength was displayed, as the range of decrease was reduced as the fiber content was increased. Considering all of these factors, it was determined that a more efficient enhancement of fire resistance was obtained when two methods are applied in combination rather than when the PF fiber content and bonding of fireproofing gypsum board are utilized individually.

Effects of Hardeners on the Low-Temperature Snap Cure Behaviors of Epoxy Adhesives for Flip Chip Bonding (플립칩용 에폭시 접착제의 저온 속경화 거동에 미치는 경화제의 영향)

  • Choi, Won-Jung;Yoo, Se-Hoon;Lee, Hyo-Soo;Kim, Mok-Soon;Kim, Jun-Ki
    • Korean Journal of Materials Research
    • /
    • v.22 no.9
    • /
    • pp.454-458
    • /
    • 2012
  • Various adhesive materials are used in flip chip packaging for electrical interconnection and structural reinforcement. In cases of COF(chip on film) packages, low temperature bonding adhesive is currently needed for the utilization of low thermal resistance substrate films, such as PEN(polyethylene naphthalate) and PET(polyethylene terephthalate). In this study, the effects of anhydride and dihydrazide hardeners on the low-temperature snap cure behavior of epoxy based non-conductive pastes(NCPs) were investigated to reduce flip chip bonding temperature. Dynamic DSC(differential scanning calorimetry) and isothermal DEA(dielectric analysis) results showed that the curing rate of MHHPA(hexahydro-4-methylphthalic anhydride) at $160^{\circ}C$ was faster than that of ADH(adipic dihydrazide) when considering the onset and peak curing temperatures. In a die shear test performed after flip chip bonding, however, ADH-containing formulations indicated faster trends in reaching saturated bond strength values due to the post curing effect. More enhanced HAST(highly accelerated stress test) reliability could be achieved in an assembly having a higher initial bond strength and, thus, MHHPA is considered to be a more effective hardener than ADH for low temperature snap cure NCPs.

A Study on the Optimal Conditions of friction Welding for JLF & STS304 Using AE Technique (AE기법을 이용한 JLF/STS304이종재료의 최적 마찰용접조건에 관한 연구)

  • Yoon, Han-Ki;Lee, Sang-Pill;Kong, Yu-Sik;Lee, Jin-Kyung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.2
    • /
    • pp.148-155
    • /
    • 2003
  • Japanese low activation terrific steel(JLF) is a good material for the parts of heat exchanger such as blanket and diverter. At first, JLF was developed as a candidate for structural materials in nuclear fusion applications. However, the development of the jointing technique of JLF steel to other materials is important for wide applications of this material to the industry fields. Recently the jointing technologies including diffusion bonding, brazing, roll bonding, explosive bonding and hot iso-static pressing have been studied for the heterogeneous materials of JLF-1 steel(Fe-9Cr-2W-V-Ta) and stainless steel(STS304). Friction welding is one of the most popular welding methods for two different kinds of materials. In this paper, the JLF-1 steel was jointed to SIS304 by friction welding method and the optimal conditions of the friction welding discussed. Acoustic emission was used as a nondestructive technique to evaluate the weld quality in processing.

Numerical Analysis of Warpage Induced by Thermo-Compression Bonding Process of Cu Pillar Bump Flip Chip Package (수치해석을 이용한 구리기둥 범프 플립칩 패키지의 열압착 접합 공정 시 발생하는 휨 연구)

  • Kwon, Oh Young;Jung, Hoon Sun;Lee, Jung Hoon;Choa, Sung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.6
    • /
    • pp.443-453
    • /
    • 2017
  • In flip chip technology, the conventional solder bump has been replaced with a copper (Cu) pillar bump owing to its higher input/output (I/O) density, finer pitch, and higher reliability. However, Cu pillar bump technology faces several issues, such as interconnect shorting and higher low-k stress due to stiffer Cu pillar structure when the conventional reflow process is used. Therefore, the thermal compression bonding (TCB) process has been adopted in the flip chip attachment process in order to reduce the package warpage and stress. In this study, we investigated the package warpage induced during the TCB process using a numerical analysis. The warpage of the TCB process was compared with that of the reflow process.

Bonding of the silane containing multi-mode universal adhesive for lithium disilicate ceramics

  • Lee, Hyun-Young;Han, Geum-Jun;Chang, Juhea;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.42 no.2
    • /
    • pp.95-104
    • /
    • 2017
  • Objectives: This study evaluated the influence of a multi-mode universal adhesive (MUA) containing silane (Single Bond Universal, 3M EPSE) on the bonding of resin cement to lithium disilicate. Materials and Methods: Thirty IPS e.max CAD specimens (Ivoclar Vivadent) were fabricated. The surfaces were treated as follows: Group A, adhesive that did not contain silane (ANS, Porcelain Bonding Resin, Bisco); Group B, silane (S) and ANS; Group C, hydrofluoric acid (HF), S, and ANS; Group D, MUA; Group E, HF and MUA. Dual-cure resin cement (NX3, Kerr) was applied and composite resin cylinders of 0.8 mm in diameter were placed on it before light polymerization. Bonded specimens were stored in water for 24 hours or underwent a 10,000 thermocycling process prior to microshear bond strength testing. The data were analyzed using multivariate analysis of variance (p < 0.05). Results: Bond strength varied significantly among the groups (p < 0.05), except for Groups A and D. Group C showed the highest initial bond strength ($27.1{\pm}6.9MPa$), followed by Group E, Group B, Group D, and Group A. Thermocycling significantly reduced bond strength in Groups B, C, and E (p < 0.05). Bond strength in Group C was the highest regardless of the storage conditions (p < 0.05). Conclusions: Surface treatment of lithium disilicate using HF and silane increased the bond strength of resin cement. However, after thermocycling, the silane in MUA did not help achieve durable bond strength between lithium disilicate and resin cement, even when HF was applied.

Orthodontic bracket bonding to glazed full-contour zirconia

  • Kwak, Ji-Young;Jung, Hyo-Kyung;Choi, Il-Kyung;Kwon, Tae-Yub
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.2
    • /
    • pp.106-113
    • /
    • 2016
  • Objectives: This study evaluated the effects of different surface conditioning methods on the bond strength of orthodontic brackets to glazed full-zirconia surfaces. Materials and Methods: Glazed zirconia (except for the control, Zirkonzahn Prettau) disc surfaces were pre-treated: PO (control), polishing; BR, bur roughening; PP, cleaning with a prophy cup and pumice; HF, hydrofluoric acid etching; AA, air abrasion with aluminum oxide; CJ, CoJet-Sand. The surfaces were examined using profilometry, scanning electron microscopy, and electron dispersive spectroscopy. A zirconia primer (Z-Prime Plus, Z) or a silane primer (Monobond-S, S) was then applied to the surfaces, yielding 7 groups (PO-Z, BR-Z, PP-S, HF-S, AA-S, AA-Z, and CJ-S). Metal bracket-bonded specimens were stored in water for 24 hr at $37^{\circ}C$, and thermocycled for 1,000 cycles. Their bond strengths were measured using the wire loop method (n = 10). Results: Except for BR, the surface pre-treatments failed to expose the zirconia substructure. A significant difference in bond strengths was found between AA-Z ($4.60{\pm}1.08MPa$) and all other groups ($13.38{\pm}2.57-15.78{\pm}2.39MPa$, p < 0.05). For AA-Z, most of the adhesive remained on the bracket. Conclusions: For bracket bonding to glazed zirconia, a simple application of silane to the cleaned surface is recommended. A zirconia primer should be used only when the zirconia substructure is definitely exposed.

INTENTIONAL REPLANTATION OF THE CROWN-ROOT FRACTURED MAXILLARY CENTRAL INCISOR WITH RESIN BONDING : CASE REPORT (치관-치근 파절된 치아의 레진접착 후 의도적 재식술을 이용한 치험례)

  • Rhee, Ye-Ri;Park, Jae-Hong;Choi, Sung-Chul;Kim, Kwang-Chul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.36 no.2
    • /
    • pp.288-292
    • /
    • 2009
  • A crown-root fracture is defined as a fracture involving enamel, dentin, and cementum. The fractures may be grouped according to pulpal involvement into uncomplicated and complicated. Generally a vertically crown-root fractured tooth must be extracted. However, it should be mentioned that the cases have been reported where bonding of the coronal fragment has led to consolidation of the intraalveolar part of the fracture. Definitive conservative therapy comprises one of four treatment alternatives; fragment removal only, fragment removal with gingivectomy, orthodontic extrusion of apical fragment, and surgical extrusion of apical fragment. The choice is primarily determined by the exact information on the site and the type of fracture, but the cost and the complexity of treatment can also be decisional factors. On the other hand, intentional replantation of the teeth with vertical root facture reconstructed with resin bonding has emerged as a new promising method in recent years. This case presents an intentional replantation of the crown-root fractured maxillary central incisor reconstructed with resin bonding. However, an obvious increase of radiolucency was observed after 4 months and the tooth was re-fractured after 16 months.

  • PDF

Tooth color changes associated with the bracket bonding and debonding (교정치료 시 브라켓 부착 및 제거에 따른 치아색 변화)

  • Kim, Seok-Pil;Hwang, In-Nam;Cho, Jin-Hyoung;Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.36 no.2 s.115
    • /
    • pp.114-124
    • /
    • 2006
  • The purpose of this study was to evaluate the tooth color changes of resin bonding sites and their adjacent sites on orthodontic bracket bonding. Sixty extracted sound premolars were used and the tooth color was recorded according to the CIE $L^*a^*b^*$ color system using a spectrophotometer. The tooth colors of the twenty premolars were measured and compared before bracket bonding and after removal. On a further twenty premolars, the tooth color was measured before and after only primer application. In the change of $L^*$ values, according to the bracket bonding and primer application, the lightness was decreased, and in the change of $a^*\;and\;b^*$ values, the color was changed into a more yellowish color The color differences $({\Delta}E^*)$ were calculated from the $L^*a^*b^*$ values and compared with the standard value of clinical detection $({\Delta}E^*=3.7)$. The color differences between before the bracket bonding and after removal noted exceeded the standard value and those of between before and after the primer application were not larger than the standard value. Toothbrushing was performed after application of the primer to evaluate the color changes according to the primer abrasion. As a control, toothbrushing was performed on the last twenty premolars. The color differences noted were larger than the standard value after toothbrushing. Also, to evaluate the color changes of the tooth which is exposed to sun irradiation after bracket removal, additional photoaging was performed and the color was measured for all teeth. The additional color differences after photoaging were smaller than the standard value. The above results suggest that the tooth color changes after fixed orthodontic treatment.

MICROLEAKAGE AND WATER STABILITY OF RESIN CEMENTS

  • Choi Sun-Young;Lee Sun-Hyung;Yang Jae-Ho;Han Jung-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.3
    • /
    • pp.369-378
    • /
    • 2003
  • Statement of Problem: Recently, resin cements have become more widely used and have been accepted as prominent luting cements. Current resin cements exhibit less microleakage than conventional luting cements. However, the constant contact with water and exposure to occlusal forces increase microleakage even in resin cements inevitably. Most bonding resins have been modified to contain a hydrophilic resin such as 2-hydroxyethylmethacrylate (HEMA) to overcome some of the problems associated with the hydrophobic nature of bonding resins. By virtue of these modifications, bonding resins absorb a significant amount of water, and there may also be significant stresses at bonding interfaces, which may adversely affect the longevity of restorations. Therefore the reinforcement of water stability of resin cement is indispensable in future study. Purpose: This study was conducted to examine the influence of water retention on microleakage of two resin cements over the period of 6 months. Materials and Methods: 32 extracted human teeth were used to test the microleakage of a single full veneer crown. Two resin cements with different components and adhesive properties - Panavia F (Kuraray Co., Osaka, Japan) and Super-Bond C&B (Sun Medical Co., Kyoto, Japan)- were investigated. The storage medium was the physiological saline solution changed every week for 1 month, 3 months, and 6 months. One group was tested after storage for 1 day. At the end of the each storage period, all specimens were exposed to thermocycling from $5^{\circ}C$ to $55^{\circ}C$ of 500 cycles and chewing simulation of 50,000 cycles, and then stained with 50% silver nitrate solution. The linear penetration of microleakage was measured using a stereoscopic microscope at ${\times}40$ magnification and a digital traveling micrometer with an accuracy of ${\pm}3{\mu}m$. Values were analyzed using two-way ANOVA test, Duncan's multiple range tests (DMRT). Results : Statistically significant difference of microleakage was shown in the 3-month group compared with the1-day or 1-month group in both systems (p<0.05) and there were statistically significant differences in microleakage between the 3-month group and the 6-month group in both systems (p<0.05). The two systems showed different tendency in the course of increased microleakage during 3 months. In Panavia F, microleakage increased slowly throughout the periods. In Super-Bond C&B, there was no significant increase of microleakage for 1 month, but there was statistically significant increase of microleakage for the next 2 months. For the mean microleakage for each period, in the 3-month group, microleakage of Super-Bond C&B was significantly greater than that of Panavia F. On the other hand, in the 6-month group, microleakage of Panavia F was significantly greater than that of Super-Bond C&B (p<0.05). Conclusion: Within the limitation of this study, water retention of two different bonding systems influence microleakage of resin cements. Further studies with the longer observation periods in viro are required in order to investigate water stability and the bonding durability of the resin cement. CLINICAL IMPLICATIONS Microleakage at the Cement-tooth interfaces did not necessarily result in the failure of the crowns. But it is considered to be a major factor influening the longerity of restorations. Further clinical approaches for decreasing the amount of microleakage are required.