• 제목/요약/키워드: school algebra

검색결과 268건 처리시간 0.022초

A CHANGE OF SCALE FORMULA FOR WIENER INTEGRALS OF UNBOUNDED FUNCTIONS II

  • Yoo, Il;Song, Teuk-Seob;Kim, Byoung-Soo
    • 대한수학회논문집
    • /
    • 제21권1호
    • /
    • pp.117-133
    • /
    • 2006
  • Cameron and Storvick discovered change of scale formulas for Wiener integrals of bounded functions in a Banach algebra S of analytic Feynman integrable functions on classical Wiener space. Yoo and Skoug extended these results to abstract Wiener space for a generalized Fresnel class $F_{A1,A2}$ containing the Fresnel class F(B) which corresponds to the Banach algebra S on classical Wiener space. In this paper, we present a change of scale formula for Wiener integrals of various functions on $B^2$ which need not be bounded or continuous.

과정-대상 측면에서 본 '대수적 사고' 연구 (A study on the a1gebraic thinking - From the perspective of 'process' and 'object' aspects -)

  • 김성준
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제12권4호
    • /
    • pp.457-472
    • /
    • 2002
  • In this paper, we deal with the algebraic thinking from the perspective of ‘process’ and ‘object’ aspects. Generally, mathematical concepts have come from the concrete process. We consider the origin of algebra as the arithmetic calculations. Also, the concept of school arithmetic is beginning from actions or procedures. However, in order to develop the alge- braic thinking and to apply this thinking, we have to see the history of algebraic thinking, and find this duality. Next we investigate various researches relating to the ‘process-object duality’. Theses studies suppose that the concept formation and thinking process should be stared from the process-object duality. Finally, we reinterprete many difficulties in algebra - equals sign, variables, algebraic expressions, and linear equations, the principle of permanence of form- from the perspective of the process-object duality.

  • PDF

PDE-PRESERVING PROPERTIES

  • PETERSSON HENRIK
    • 대한수학회지
    • /
    • 제42권3호
    • /
    • pp.573-597
    • /
    • 2005
  • A continuous linear operator T, on the space of entire functions in d variables, is PDE-preserving for a given set $\mathbb{P}\;\subseteq\;\mathbb{C}|\xi_{1},\ldots,\xi_{d}|$ of polynomials if it maps every kernel-set ker P(D), $P\;{\in}\;\mathbb{P}$, invariantly. It is clear that the set $\mathbb{O}({\mathbb{P}})$ of PDE-preserving operators for $\mathbb{P}$ forms an algebra under composition. We study and link properties and structures on the operator side $\mathbb{O}({\mathbb{P}})$ versus the corresponding family $\mathbb{P}$ of polynomials. For our purposes, we introduce notions such as the PDE-preserving hull and basic sets for a given set $\mathbb{P}$ which, roughly, is the largest, respectively a minimal, collection of polynomials that generate all the PDE-preserving operators for $\mathbb{P}$. We also describe PDE-preserving operators via a kernel theorem. We apply Hilbert's Nullstellensatz.

IMPLICATIVE SOFT IDEALS AND IMPLICATIVE IDEALISTIC SOFT BCK-ALGEBRAS

  • Lee, Kyoung-Ja;Jun, Young-Bae;Park, Chul-Hwan
    • 대한수학회논문집
    • /
    • 제26권2호
    • /
    • pp.183-196
    • /
    • 2011
  • Molodtsov [5] introduced the concept of soft set as a new mathematical tool for dealing with uncertainties that is free from the difficulties that have troubled the usual theoretical approaches. In this paper we apply the notion of soft sets by Molodtsov to an implicative ideal of BCK-algebras. The notion of implicative soft ideals in BCK-algebras and implicative idealistic soft BCK-algebras is introduced, and related properties are investigated. Relations between implicative soft ideals and commutative (resp. positive implicative) soft ideals are discussed. Also, relations between implicative idealistic soft BCK-algebras and commutative (resp. positive implicative) idealistic soft BCK-algebras are provided.

JORDAN 𝒢n-DERIVATIONS ON PATH ALGEBRAS

  • Adrabi, Abderrahim;Bennis, Driss;Fahid, Brahim
    • 대한수학회논문집
    • /
    • 제37권4호
    • /
    • pp.957-967
    • /
    • 2022
  • Recently, Brešar's Jordan {g, h}-derivations have been investigated on triangular algebras. As a first aim of this paper, we extend this study to an interesting general context. Namely, we introduce the notion of Jordan 𝒢n-derivations, with n ≥ 2, which is a natural generalization of Jordan {g, h}-derivations. Then, we study this notion on path algebras. We prove that, when n > 2, every Jordan 𝒢n-derivation on a path algebra is a {g, h}-derivation. However, when n = 2, we give an example showing that this implication does not hold true in general. So, we characterize when it holds. As a second aim, we give a positive answer to a variant of Lvov-Kaplansky conjecture on path algebras. Namely, we show that the set of values of a multi-linear polynomial on a path algebra KE is either {0}, KE or the space spanned by paths of a length greater than or equal to 1.

대수 증명에서 종속적 일반성의 인식 및 특정수 전이에 관한 연구 (Study on recognition of the dependent generality in algebraic proofs and its transition to numerical cases)

  • 강정기;장혜원
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제53권1호
    • /
    • pp.93-110
    • /
    • 2014
  • Algebra deals with so general properties about number system that it is called as 'generalized arithmetic'. Observing students' activities in algebra classes, however, we can discover that recognition of the generality in algebraic proofs is not so easy. One of these difficulties seems to be caused by variables which play an important role in algebraic proofs. Many studies show that students have experienced some difficulties in recognizing the meaning and the role of variables in algebraic proofs. For example, the confusion between 2m+2n=2(m+n) and 2n+2n=4n means that students misunderstand independent/dependent variation of variables. This misunderstanding naturally has effects on understanding of the meaning of proofs. Furthermore, students also have a difficulty in making a transition from algebraic proof to numerical cases which have the same structure as the proof. This study investigates whether middle school students can recognize dependent generality and make a transition from proofs to numerical cases. The result shows that the participants of this study have a difficulty in both of them. Based on the result, this study also includes didactical implications for teaching the generality of algebraic proofs.

FOURIER-YEH-FEYNMAN TRANSFORM AND CONVOLUTION ON YEH-WIENER SPACE

  • Kim, Byoung Soo;Yang, Young Kyun
    • Korean Journal of Mathematics
    • /
    • 제16권3호
    • /
    • pp.335-348
    • /
    • 2008
  • We define Fourier-Yeh-Feynman transform and convolution product on the Yeh-Wiener space, and establish the existence of Fourier-Yeh-Feynman transform and convolution product for functionals in a Banach algebra $\mathcal{S}(Q)$. Also we obtain Parseval's relation for those functionals.

  • PDF

Hesitant fuzzy soft sets over UP-algebras

  • Mosrijai, Phakawat;Iampan, Aiyared
    • Annals of Fuzzy Mathematics and Informatics
    • /
    • 제16권3호
    • /
    • pp.317-331
    • /
    • 2018
  • This paper aims to extend the notion of hesitant fuzzy sets on UP-algebras to hesitant fuzzy soft sets over UP-algebras by merging the notions of hesitant fuzzy sets and soft sets. Further, we discuss the notions of hesitant fuzzy soft strongly UP-ideals, hesitant fuzzy soft UP-ideals, hesitant fuzzy soft UP-filters, and hesitant fuzzy soft UP-subalgebras of UP-algebras, and provide some properties.

미국 조지아주와 우리나라 수학과 교육과정 비교 분석 연구 - 수와 연산 및 대수 영역을 중심으로 - (A Study on the Comparison and Analysis of School Mathematics Curriculum in the State of Georgia and Korea)

  • 황혜정
    • 한국학교수학회논문집
    • /
    • 제11권4호
    • /
    • pp.629-654
    • /
    • 2008
  • 최근 들어 새롭게 개정된 미국 조지아주 수학과 교육과정을 소개하고, 이의 이해를 보다 심도 있게 도모하기 위하여 우리나라 제7차 수학과 교육과정 수정안과 비교 분석하고자 하였다. 그러나, 미국 조지아주 수학과 교육과정 전체를 한 번에 다루기에는 그 양이 너무나 방대하여, 본 고에서는 '수와 연산' 및 '대수' 영역(우리나라의 '수와 연산', '문자와 식', '규칙성' 또는 '함수'에 해당)을 중심으로 다루고자 하였다. 본고에서는 두 나라간의 교육과정 내용의 양질에 관한 우위를 가리거나 우리나라 교육과정의 문제점 내지 개선책을 마련하기 보다는 수학 교육 관련 전문가인 독자들로 하여금 대수 영역 관련의 내용에 관하여 두 나라 간에 어떠한 차이가 있는지 살펴보고 음미해 볼 수 있는 근간을 제공하고자 하였다. 또한, 본 고에 제시된 연구 결과를 비롯하여 향후 여러 나라의 수학과 교육과정을 보다 심도 있게 연구하고, 앞으로 우리나라 수학과 교육과정을 개정하는 데에 기초 자료로 활용되기를 기대한다.

  • PDF

2009 개정 수학교육과정과 IBDP 수학과 교육과정에서의 교과서 비교 연구 - 고등학교 대수 영역을 중심으로 - (A Comparative Study of Mathematics Textbook Between 2009 Revised Curriculum and IB Diploma Program - The case of high school Algebra -)

  • 양현주;좌준수;최승현
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제29권3호
    • /
    • pp.391-421
    • /
    • 2015
  • 과학기술의 급격한 발달과 인터넷의 활성화 등을 통해 전 세계가 활발한 상호 교류를 하게 되었으며 이러한 사회 변화의 결과 세계화라는 새로운 패러다임이 떠오르고 있다. 이와 같은 사회적 흐름에 따라 시대가 요구하는 인재상도 달라지고 있으며 우리의 교육도 국제교육 즉, 글로벌 교육에 많은 관심을 갖게 되었다. 수학교육의 측면에서도 우리나라의 인재들이 경쟁력을 갖추어야 하는 것은 중요한 과제로 떠오르게 되었다. 이에 본고에서는 우리나라 고등학교 교육과정 체제 안에서 교육과정의 국제화를 현실화하는 방안의 하나인 국제 공인 교육과정 IBDP(International Baccalaureate Diploma Program: 이하 IBDP로 표기)와 우리나라 고등학교 교육과정 중 중요한 부분인 대수 영역을 중심으로 비교 및 분석하였다. 특히, 우리나라 교육과정과 IBDP에 의해 개발된 교과서 중 수학 상급과정(Mathematics Higher Level: 이하 HL로 표기)단계를 선택하였으며 각 교과서에서 다루는 대수영역에 관한 내용의 범위 및 깊이, 문제의 수준 그리고 개념을 설명하는 방식이나 문제의 유형 및 교수-학습 방법 등을 분석하여 단원별 논의점을 제시하였다.