• Title/Summary/Keyword: scene perception

Search Result 68, Processing Time 0.027 seconds

Super-multiview windshield display for driving assistance

  • Urano, Yohei;Kashiwada, Shinji;Ando, Hiroshi;Nakamura, Koji;Takaki, Yasuhiro
    • Journal of Information Display
    • /
    • v.12 no.1
    • /
    • pp.43-46
    • /
    • 2011
  • A three-dimensional windshield display (3D-WSD) can present driving information at the same depth as the objects in the outside scene. Herein, a super-multiview 3D-WSD is proposed because the super-multiview display technique provides smooth motion parallax. Motion parallax is the only physiological cue for perceiving the depth of a 3D image displayed at a far distance, which cannot be perceived by vergence and binocular parallax. A prototype system with 36 views was constructed, and the discontinuity of motion parallax and accuracy of depth perception were evaluated.

K-Retinex Algorithm for Fast Back-Light Compensation (역광 사진의 빠른 보정을 위한 Retinex 알고리즘의 성능 개선)

  • Kang, Bong-Hyup;Jeon, Chang-Won;Ko, Han-Seok
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.2 s.314
    • /
    • pp.126-136
    • /
    • 2007
  • This paper presents an enhanced algorithm for compensating the visual quality in back-light image. Current cameras do not represent all details of scene into human's eye. Saturation and underexposure are common problems in back-light image. Retinex algorithm, derived from Land's theory on human visual perception is known to be effective in enhancing the contrast. However, its weaknesses are long processing time and low contrast of bright area in back-light scene because of compensating the details of dark area. In this paper, K-Retinex algorithm is proposed to reduce the processing time and enhance the contrast in both dark and bright area. To show the superiority of proposed algorithm, we compare the processing time, local standard deviation and contrast per pixel of each area above.

The effect of inter-pupilary distance and accommodative convergence on binocular fusion and fixational depth (동공간 거리와 조절성 수렴이 양안 융합과 응시 깊이에 미치는 효과)

  • 반지은;감기택;정찬섭;손정영
    • Korean Journal of Cognitive Science
    • /
    • v.14 no.1
    • /
    • pp.17-28
    • /
    • 2003
  • In order to provide natural images with a specified depth through three-dimensional display system, the stereo images should be similar to those projected from real environment as much as possible. Even when two persons see an identical scene, the binocular Parallax between two images of an object varies as a function of one's inter-pupilary distance (IPD). In this study, we investigated whether individual differences, such as IPD and accommodative vergence, would affect the perception of three dimensional scene provided by stereo-images. Results showed that a person's IPD is correlated with the limit of screen and binocular parallax for single vision, and affects the perceived depth of an object on fixation. More specifically, with longer IPD the limit of screen and binocular parallax for single vision is decreased, and the perceived depth is reduced. These results suggest that the screen and binocular parallax of an object should be calibrated with regard to users IPD to provide natural stereo-images with a specified depth and to Prevent double vision.

  • PDF

Autonomous Driving Platform using Hybrid Camera System (복합형 카메라 시스템을 이용한 자율주행 차량 플랫폼)

  • Eun-Kyung Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1307-1312
    • /
    • 2023
  • In this paper, we propose a hybrid camera system that combines cameras with different focal lengths and LiDAR (Light Detection and Ranging) sensors to address the core components of autonomous driving perception technology, which include object recognition and distance measurement. We extract objects within the scene and generate precise location and distance information for these objects using the proposed hybrid camera system. Initially, we employ the YOLO7 algorithm, widely utilized in the field of autonomous driving due to its advantages of fast computation, high accuracy, and real-time processing, for object recognition within the scene. Subsequently, we use multi-focal cameras to create depth maps to generate object positions and distance information. To enhance distance accuracy, we integrate the 3D distance information obtained from LiDAR sensors with the generated depth maps. In this paper, we introduce not only an autonomous vehicle platform capable of more accurately perceiving its surroundings during operation based on the proposed hybrid camera system, but also provide precise 3D spatial location and distance information. We anticipate that this will improve the safety and efficiency of autonomous vehicles.

Depth Map Generation Using Infocused and Defocused Images (초점 영상 및 비초점 영상으로부터 깊이맵을 생성하는 방법)

  • Mahmoudpour, Saeed;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.19 no.3
    • /
    • pp.362-371
    • /
    • 2014
  • Blur variation caused by camera de-focusing provides a proper cue for depth estimation. Depth from Defocus (DFD) technique calculates the blur amount present in an image considering that blur amount is directly related to scene depth. Conventional DFD methods use two defocused images that might yield the low quality of an estimated depth map as well as a reconstructed infocused image. To solve this, a new DFD methodology based on infocused and defocused images is proposed in this paper. In the proposed method, the outcome of Subbaro's DFD is combined with a novel edge blur estimation method so that improved blur estimation can be achieved. In addition, a saliency map mitigates the ill-posed problem of blur estimation in the region with low intensity variation. For validating the feasibility of the proposed method, twenty image sets of infocused and defocused images with 2K FHD resolution were acquired from a camera with a focus control in the experiments. 3D stereoscopic image generated by an estimated depth map and an input infocused image could deliver the satisfactory 3D perception in terms of spatial depth perception of scene objects.

A New Mapping Algorithm for Depth Perception in 3D Screen and Its Implementation (3차원 영상의 깊이 인식에 대한 매핑 알고리즘 구현)

  • Ham, Woon-Chul;Kim, Seung-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.6
    • /
    • pp.95-101
    • /
    • 2008
  • In this paper, we present a new smoothing algorithm for variable depth mapping for real time stereoscopic image for 3D display. Proposed algorithm is based on the physical concept, called Laplacian equation and we also discuss the mapping of the depth from scene to displayed image. The approach to solve the problem in stereoscopic image which we adopt in this paper is similar to multi-region algorithm which was proposed by N.Holliman. The main difference thing in our algorithm compared with the N.Holliman's multi-region algorithm is that we use the Laplacian equation by considering the distance between viewer and object. We implement the real time stereoscopic image generation method for OpenGL on the circular polarized LCD screen to demonstrate its real functioning in the visual sensory system in human brain. Even though we make and use artificial objects by using OpenGL to simulate the proposed algorithm we assure that this technology may be applied to stereoscopic camera system not only for personal computer system but also for public broad cast system.

A Study on the Change Process of Students' Perception and Expression About Distance and Speed in Distance Function and Speed Function (거리함수와 속력함수에서, 거리와 속력의 관계에 대한 학생들의 인식과 표현의 변화과정에 대한 연구)

  • Lee, Dong Gun;Ahn, Sang Jin;Kim, Suk Hui;Shin, Jae Hong
    • School Mathematics
    • /
    • v.18 no.4
    • /
    • pp.881-901
    • /
    • 2016
  • This study is about investigating students' recognition and expression on relationship of 'time, distance, speed' via teaching experiment. In this process, students showed not only a change in perception of the relationship of 'time, distance, speed' but also recognizing the average speed as a viewpoint of the slope of the line connecting the end points of the interval in the distance function as well as another way of perceiving average speed of a height of a rectangle. In this process, the study shows the scene of expanding the relation of 'distance = time ${\times}$ speed' to 'distance = time ${\times}$ average speed', and also the student who makes the continuous reasoning shows the possibility of constructing a new function that can explain the change of the primitive function by allocating the average rate of change to the interval. Although this study was conducted with a limited number of students, this study suggests some implications through the observation of relationship of 'time, distance, speed' the students'. We hope that these results will be the starting point for various studies for constructing the integral learning model in the future.

A Study on the Phenomenal Expression Methods and the Characteristics of Spatial Experience In the Steven Holl's Museum Architecture (스티븐 홀의 뮤지엄 건축에 나타나는 공간체험의 현상적 표현 방법 및 특성에 관한 연구)

  • Jang, Hyun-Ju;Park, Chan-Il
    • Korean Institute of Interior Design Journal
    • /
    • v.25 no.2
    • /
    • pp.151-162
    • /
    • 2016
  • The purpose of this study is to approach to the phenomenological point of view to explore a design method for providing a variety of spatial experience of the viewer according to the functional changes of the modern museum architecture. For that, this study intends to analysis and consider the Steven Holl's Museum applied to the phenomenological perception for architectural design. The method of this study is summarized as follows: 1) Consider the spatial role and function of the Museum Architecture in the phenomenological approach 2) Study on the phenomenological architectural concepts and expressional method of Steven Holl 3) Finally, propose the utilization for the experiential space that is required to implement the contemporary museum architecture. The results of this study are as follows: 1) Steven Holl's phenomenological architectural concept is the basis of the perception and awareness and has connotations of temporality and it is figured out by the approach to the environment, sense and motion. 2) Steven Holl implement the architecture as a place of experience by connecting between the place and the environment through the development of a variety of scenes and situations and planning the phenomenon of multisensory space. 3) The spatial experience appeared in Steven Holl's museum architecture is implemented through the diversity of the scene, the persistence of the situation, the autonomy of light and color, transparency of the haptic and the potential of the material and geometry.

Gamma Correction for Local Brightness and Detail Enhancement of HDR Images (HDR 영상의 지역적 밝기 및 디테일 향상을 위한 감마 보정 기법)

  • Lee, Seung-Yun;Ha, Ho-Gun;Song, Kun-Woen;Ha, Yeong-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.5
    • /
    • pp.837-847
    • /
    • 2016
  • Tone mapping for High Dynamic Range(HDR) image provides matching human visual perception between real world scene and displayable devices. Recently, a tone mapping algorithm based on localized gamma correction is proposed. This algorithm is using human visual properties of contrast and colorfulness with background intensity, generating a weight map for gamma correction. However, this method have limitations of controlling enhancement region as well as generating halo artifacts caused by the weight map construction. To overcome aforementioned limitations, proposed algorithm in this paper modifies previous weight map, considering base layer intensity of input luminance channel. By determining enhancement region locally and globally based on base layer intensity, gamma values are corrected accordingly. Therefore, proposed algorithm selectively enhances local brightness and controls strength of edges. Subjective evaluation using z-score shows that our proposed algorithm outperforms the conventional methods.

The Changes of Color Emotions According to the Time flow and Natural Environmental Color Changes (시간과 빛의 변화에 따른 자연색채 감성의 변화연구)

  • Lee, Jung-A;Lee, Yun-Joo
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2006.11a
    • /
    • pp.121-124
    • /
    • 2006
  • This study was done with a goal to observe changes of color emotions according to time flow and light changes as well as to study its moaning of color experience of natural scene to modern city dwellers with artificial surroundings. Individuals develop various feelings after seeing a color, but there is sometimes a common feeling raised among these various feelings. This study aims to investigate the influence of natural colors of surroundings on the emotions of human beings. First of all, we tried to discover how feelings change after a person is reminded of a color through an experience (recognition) of a natural color. Second, differences in feelings resulting from color perception are analyzed after time passes (sunrise, daytime, and sunset) and the colors of natural surroundings change accordingly. Survey was done in the period of $Jul.8^{th}$ to $10^{th}$, 2005 with 100 people (55 male and 45 female) in various professions and various ages between twenties to forties as respondent.

  • PDF