• Title/Summary/Keyword: scanning transmission electron microscopy

Search Result 819, Processing Time 0.031 seconds

Property of Nickel Silicide with 60 nm and 20 nm Hydrogenated Amorphous Silicon Prepared by Low Temperature Process (60 nm 와 20 nm 두께의 수소화된 비정질 실리콘에 따른 저온 니켈실리사이드의 물성 변화)

  • Kim, Joung-Ryul;Park, Jong-Sung;Choi, Young-Youn;Song, Oh-Sung
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.6
    • /
    • pp.528-537
    • /
    • 2008
  • 60 nm and 20 nm thick hydrogenated amorphous silicon(a-Si:H) layers were deposited on 200 nm $SiO_2$/single-Si substrates by inductively coupled plasma chemical vapor deposition(ICP-CVD). Subsequently, 30 nm-Ni layers were deposited by an e-beam evaporator. Finally, 30 nm-Ni/(60 nm and 20 nm) a-Si:H/200 nm-$SiO_2$/single-Si structures were prepared. The prepared samples were annealed by rapid thermal annealing(RTA) from $200^{\circ}C$ to $500^{\circ}C$ in $50^{\circ}C$ increments for 40 sec. A four-point tester, high resolution X-ray diffraction(HRXRD), field emission scanning electron microscopy(FE-SEM), transmission electron microscopy(TEM), and scanning probe microscopy(SPM) were used to examine the sheet resistance, phase transformation, in-plane microstructure, cross-sectional microstructure, and surface roughness, respectively. The nickel silicide from the 60 nm a-Si:H substrate showed low sheet resistance from $400^{\circ}C$ which is compatible for low temperature processing. The nickel silicide from 20 nm a-Si:H substrate showed low resistance from $300^{\circ}C$. Through HRXRD analysis, the phase transformation occurred with silicidation temperature without a-Si:H layer thickness dependence. With the result of FE-SEM and TEM, the nickel silicides from 60 nm a-Si:H substrate showed the microstructure of 60 nm-thick silicide layers with the residual silicon regime, while the ones from 20 nm a-Si:H formed 20 nm-thick uniform silicide layers. In case of SPM, the RMS value of nickel silicide layers increased as the silicidation temperature increased. Especially, the nickel silicide from 20 nm a-Si:H substrate showed the lowest RMS value of 0.75 at $300^{\circ}C$.

Establishment of In Vitro 3-Dimensional Culture System of Mouse Endometrial Cells;I. Cytohistological Study on Mouse Endometrium (마우스 자궁내막 세포를 이용한 3차원적 배양시스템 확립에 관한 연구; I. 마우스 자궁내막에 관한 세포조직학적 연구)

  • Nam, Hwa-Kyung;Kim, Eun-Young;Lee, Keum-Sil;Park, Sae-Young;Park, Eun-Mi;Kwon, Jung-Kyun;Yoon, San-Hyun;Park, Se-Pil;Lim, Jin-Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.27 no.1
    • /
    • pp.31-37
    • /
    • 2000
  • This study was designed to identify the ultrastructural changes of mouse endometrium during peri-implantation period and obtain the fundamental information for the establishment of 3-dimensional culture system of mouse endometrial cells in vitro. The used female ICR mice ($6{\sim}8$ wks) were conducted on pregnant. The biopsies were obtained from whole uterus at cycle day 1 (D1) and day 5 (D5) after hCG injection and mating. The biopsies materials were fixed 2.5% glutaraldehyde and 1% osmium tetroxide. Subsequently, for observation using light and transmission electron microscopy (LM and TEM), they were dehydrated and embedded in Epon and the embedded biopsies were sectioned and stained. For scanning electron microscopy (SEM), the fixed specimens were dehydrated, dried and coated with gold. 1) For LM, the biopsied materials at D5 (late secretory phase) were appeared the extended stromal layer by increased connective tissues and the fully developed endometrial glands and vessels compared with D1 (early secretory phase). 2) For TEM, the mouse endometrium was consisted of 3-layers, a simple polarized columnar epithelial cells, basement membrane and stromal cells. At D5, the distribution of microvilli, endoplasmic reticulum, Golgi body, lipid and glycogen deposits, secretory granules and surface area of basement membrane were increased. 3) For SEM, the degree of folding and microvilli of surface of mouse epithelial cells was became more and more according to the process of secretory phase, and at D5, implantation time of mouse, the appearance of pinopodes as a specific marker of uterine receptivity was found. The uterine pinopodes of mouse were found in narrow sites at the luminal surface, irregularity and appeared the different stages in the same sample. Therefore, these results indicated that the mouse endometrium was experienced dramatic morphological changes during peri-implantation period.

  • PDF

Ultrastructural Observation on the Sperm of the Grey Red-blacked Vole, Clethrionomys rufocanus (대륙밭쥐(Clethrionomys rufocanus) 정자의 미세구조 관찰)

  • Lee, Jung-Hun
    • Applied Microscopy
    • /
    • v.39 no.2
    • /
    • pp.89-99
    • /
    • 2009
  • To investigate the morphological characteristics of spermatozoa of the grey red-blacked vole (Clethrionomys rufocanus) belongings to the subfamily Cricetinae, subgenus Clethrionomys were examined by scanning and transmission electron microscopes. The sperm head of C. rufocanus was an ax or hatchet in shape with a curved single dorsal hook. The total length of C. regulus sperm was 95.8 ${\mu}m$. The length of sperm head was 7.8 ${\mu}m$, and the tail (88.0 ${\mu}m$) consisted of four major segments: the neck (1.0 ${\mu}m$), middle piece (22.0 ${\mu}m$), and principal piece plus end piece (65.0 ${\mu}m$), respectively. The segmented columns were about 10~12 in number. The number of gyres of mitochondria ranged from about 170 to 178. The post-nuclear cap occupied about a half of nucleus. The equatorial segment is located between the post-nuclear cap segment and acrosomal cap on the nuclear surface. Nos. 1, 5 and 6 of the outer dense fibers were larger than the others. A fibrous sheath and longitudinal column of the principal piece were in evidence, but the fibrous sheath was not seen at the end piece. In conclusion, the morphological structures of sperm head and tail may be useful information to patterning of sperm evolution and classifying of species.

Ultrastructure of the Eyes of Menemerus fulvus (Araneae: Salticidae) (흰수염깡충거미(Menemerus fulvus) (거미목, 깡충거미과)시각기의 미세구조)

  • 김주필;권중균
    • The Korean Journal of Soil Zoology
    • /
    • v.5 no.2
    • /
    • pp.101-112
    • /
    • 2000
  • Spiders usually have poor vision but not the jumping spiders. Their eight eyes are located on its distinctive box-shaped head and relatively well developed. The Spiders were fixated with 3% glutaraldehyde and thin section was performed with ultra-microtome. The specimens were observed with light microscopy, transmission and scanning electron microscopy. Eye area of jumping spider is competed of three rows. The first eye row comprise four eyes. Among them, two anterior median eyes are the largest and two anterior lateral eyes are relatively small. The former are main-eyes and have excellent vision. The second row, which has the two smallest eyes, is located about midway between the first and third rows. The third row is about half-way back on the thorax and eyed of which are middle size. To investigate ultrastructure of salticid spiders'eye, Menemerus fulvus was chosen. All of Menemerus fuvus's eyes are composed of cornea, lens, vitreous body and retina in histologically. Cornea layer, linked to exocuticle of exoskeleton. is regular layer structure without any cell tripe. Lenses are biconvex type. Retinas comprise well developed microvilli-shape rhabdomeres, unpigmented supporting cells, and pigmented cell. Retinas of anterior median eyes are surrounded by circular cylinder-shaped vitreous body, photoreceptor, i.e. rhabdomeres, of it is irregularly arranged compared to the other eyes.

  • PDF

Morphological Study of the Regeneration of the Mouse Olfactory Epithelial Cells after Destruction by Intranasal Zinc Sulfate Irrigation (코 안 $ZnSO_4$ 점적으로 손상된 마우스 후각 상피세포의 재생에 대한 형태학적 연구)

  • Kang, Wha-Sun;Moon, Young-Wha
    • Applied Microscopy
    • /
    • v.37 no.4
    • /
    • pp.219-230
    • /
    • 2007
  • The morphological effects of intranasal zinc sulfate(5% solution) irrigation on the mouse olfactory epithelium and the regeneration process of olfactory receptor cells following nasal irrigation were studied with scanning and transmission electron microscope. The results were as follows: 1. The septal epithelium except some basal cells was wholly detached from the basement membrane, during the first 6 to 24 hours after 5% zinc sulfate irrigation. 2. 3 days after $ZnSO_4$ treatment, two layered septal epithelium was formed from basal cells. And microvilli were observed in the apical epithelium of newly formed olfactory epithelial cells. 3. 5 days after treatment, a lot of centrosomes and basal bodies were observed in the olfactory receptor cells, and cilia were lined up between microvilli on the apical membrane of olfactory receptor cells. And immature olfactory knob was first observed in the newly formed olfactory receptor cells. Mature olfactory knob was observed 1 week after treatment. 4. There are very many mature olfactory knobs in the olfactory receptor cells 2 weeks after intranasal zinc sulfate irrigation. These results support that treatment with 5% zinc sulfate is a good experimental model for the regeneration of mammalian nervous tissues because this method could thoroughly detach the septal epithelium. During the regeneration of olfactory receptor cells, the surface membrane of the olfactory receptor cells widen the surface with the microvilli. Then cilia, which arranged in a line, substituted for the microvilli. The part of the surface membrane with cilia protruded and finally formed the olfactory vesicle.

Morphological Change of Men's Hair Shaft by Weathering (풍화작용에 의한 정상모발의 형태학적 변화)

  • Hong, Wan-Sung;Chang, Byung-Soo;Lim, Do-Seon;Park, Sang-Ock;Yoe, Sung-Moon
    • Applied Microscopy
    • /
    • v.30 no.1
    • /
    • pp.11-20
    • /
    • 2000
  • The morphological changes in normal and weathering hair shafts of the human scalp were investigated by using the transmission and scanning electron microscopes. The hair shaft composed of cuticular layer, cortex and medula. The surface of normal hairs are smooth and covered by imbricated cuticular scales. The cuticular layer consists of five to seven cuticle cells. These cells, which are flat and thin, measuring about $100{\mu}m$ long and $0.4{\mu}m$ thick, appears intercellular membrane complex in diameter 25 nm. The cortex composed of melanin granules and cornified cells, which multicomponent concentric microfibrils in diameter about 8 nm give rise to macrofibrils in diameter $0.5{\mu}m$ to $0.8{\mu}m$ encased in limiting membrane. The melanin granules are spherical shaped about $0.5{\mu}m$ in size and scattered between macrofibrils. The medulla in the normal hairs are $16{\mu}m$ in diameter centrally region of cortex. Normal hair shafts undergo progressive degenerative changes due to a variety of environmental insults. In the initial weathering process of hair, the cuticular scales became irregularly raised and broken, and then cuticle cells formed cytoplasmic vacuolation, following dissociated intercellular membrane complex, ultimately entirely lost and nuded cortex. Occasionally, transverse fissures were seen at hair shafts indicating that the hairs were deteriorated. Complete removal of the cuticular layer in the heavily damaged cortex portions appeared splitting of the cortical cell into its macrofibrils and scattering of melanin granules.

  • PDF

Structural Features of the Glandular Trichomes in Leaves of Carnivorous Drosera anglica Huds. (식충식물 긴잎끈끈이주걱 (Drosera anglica Huds.) 분비모의 구조적 특성)

  • Baek, Kyung-Yeon;Kim, In-Sun
    • Applied Microscopy
    • /
    • v.38 no.1
    • /
    • pp.21-28
    • /
    • 2008
  • Carnivorous plants vary in their unique features of morphology, ultrastructure and biochemical properties by species. Furthermore, prey-capturing mechanism as well as structural and physiological adaptations have been used for grouping various carnivorous species. In Drosera plants, glandular trichomes, which develop in the leaf epidermis, are known to play the most important role during the prey capturing process. The present study examined such trichomes, focusing on the glandular type, in leaves of Drosera anglica using scanning and transmission electron microscopy. Three types of rudimentary glandular trichomes were found to develop within the folded leaf primordia and immature leaf during early development. The first type, stalked glandular trichomes (Type I), occurred on the margin and upper epidermis of the leaf. With maturation, the longest glandular trichomes having lengthy stalks, ca. $2.2{\sim}5.1\;mm$, developed along the margin, while shorter stalked trichomes, ca. up to $200\;{\mu}m$, were found on the inner leaf blade. The shorter ones consisted of a globose head having two layers of secretory cells, parenchyma bell cells and tracheids and a multicellular stalk. The stalks gradually decreased in length in centripetal fashion. The second type, Type II, having ca. $15{\sim}30\;{\mu}m$ short stalks, also developed along the inner blade. Both types secreted mucilage from the secretory cells which had a thin cell wall and cuticle layer. The sessile six-celled glandular trichomes were the third type, Type III, and were $25{\sim}40\;{\mu}m$ in length. They were distributed most commonly throughout the upper and lower epidermis, petiole and even on the stalk surfaces of the first two types of trichomes. The third type was also found to be involved in the active secretion. In prey capturing leaves, all trichome types secreted substances through thin cuticles in the head cell wall, which exhibited relatively loose wall components.

Development of the Trichomes in Floating Leaves of Salvinia Species (생이가래속(Salvinia) 부유엽 모용의 분화발달)

  • Seo, Ae-Ri;Kim, In-Sun
    • Applied Microscopy
    • /
    • v.38 no.2
    • /
    • pp.117-124
    • /
    • 2008
  • Salvinia is an aquatic plant forming dimorphic leaves that have been modified into floating and submerged leaves. A air of floating leaves plays an important role for the floating and photosynthesis while the submerged leaves, which are lim and long, have the form and function of root. Many aquatic plants develop trichomes in the epidermis but in Salvinia, richomes grow densely in the epidermis of the dimorphic leaves. The present study examined the differentiation pattern of trichomes developing in the floating leaves of S. natans and S. molesta by scanning and transmission electron microscopy. Trichomes developing in the floating leaves of Salvinia showed very different patterns. In S. natans, they were arranged in a V-shape form, having 20${\sim}$25 rows at $18{\sim}25^{\circ}$ on both sides of the lamina divided by the midrib in the floating leaf. In each row, 8${\sim}$10 oval-shaped cells, $200{\sim}290{\mu}m$ in length, were arranged in a spiral fashion. Four trichomes of this form made a trichome unit, but their apical parts were separated from one another and developed into the so-called 'knuckle-crane' type. On the other hand, in S. molesta, trichomes differentiated in a unique pattern quite different from those of S. natans. At the early stage of differentiation, trichomes protruded from the epidermis and then 4${\sim}$6 cylindrical cells grew $400{\sim}600{\mu}m$ long and the four trichomes formed as an unit. The four grouped trichomes were interconnected through their apex and developed in the 'egg-beater' type. Then $300{\sim}600{\mu}m$ long multi-cellular stalk cells grew and protruded out of the epidermal surface from the basal part of the trichomes. Such a structural characteristic of trichomes is considered to play a very important role along with the aerenchyma tissue in the leaf mesophyll tissue for the floating of Salvinia on the water surface.

Biological Effects of bioactive glass and natural coral on periodontal ligament fibroblast-like cell behavior (생체유리와 천연산호 골이식재가 치주인대 섬유아세포 활성에 미치는 영향)

  • Shim, Sung-Kyu;Han, Soo-Boo
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.1
    • /
    • pp.173-192
    • /
    • 1999
  • The purpose of this study was to evaluate the effects of bioactive glass and natural coral on the human periodontal ligament fibroblast(HPLF) behaviors during the regeneration process of peridontium. To determine the cellular events occuring in the presence of the particles of bioactive glass and natural coral, HPLF were isolated from healthy premolar teeth extracted for orthodontic treatment. Cells were cultured in ${\alpha}$MEM at 37$^{\circ}C$, 5% $CO_2$, 95% humidity incubator. Bioactive glass and natural coral were powdered, and each particles(<40${\mu}$m) were placed on the cultured cells at the concentration of 0.3mg/ml, and 1,0mg/ml for experimental group. In control group no particles were added. And each group was evaluated by examining the cell morphology under phase-contrast micrograph at 4 day and transmission electron micrograph(TEM) and scanning electron micrograph(SEM) at 14 day, alkaline phosphatase activity at 5 and 9 day, protain synthesis at 4 day, DNA synthesis at 1, 2, 3 and 4 day, cell proliferation at 1, 3, 5,7 and 9 day and the formation of bone nodule at 30 day after culturing all groups in mineralizing supplemented mediun, No significant changes in cell morphology by adding these two matirials were found under phase contrast microscopy and TEM. HPLF phagocytocized each particles suggesting that HPLF is involved in the process of resorbing each particles and that bioactive glass were more biocompatible than natural coral. The ALPase activity of bioactive glass 0.3 mg/ml was similar with control groups and all the rests of control groups were significantly low(P<0.01) indicating a transient dedifferentiation of HPLF in the presence of bioactive glass and natural coral particles. There were no significant differences of protein synthesis between all groups. The DNA synthesis in experimental groups were significantly lower than control groups at 1, 2 and 3 day (P<0.01) but became similar to control groups at 4 day. Between control groups, the DNA synthesis in bioactive glass O.3mglml group was significantly higher than other groups(P<0.01). Cell proliferation in natural coral 1.0mg/ml and bioactive glass 1.0mglml groups were significantly lower than control group at 3 day(P<0.05) and there were no differences at 5, 7, 9 day. There were more bone nodule formation in experimental groups than in control groups. In conclusion, these results indicated that bioactive glass and natural coral have some effects of a transient dedifferentiation on HPLF and regeneration of periodontal tissues, however any significant cytotoxic effect on HPLF by these two particles were not found.

  • PDF

Thermal Compression of Copper-to-Copper Direct Bonding by Copper films Electrodeposited at Low Temperature and High Current Density (저온 및 고전류밀도 조건에서 전기도금된 구리 박막 간의 열-압착 직접 접합)

  • Lee, Chae-Rin;Lee, Jin-Hyeon;Park, Gi-Mun;Yu, Bong-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.102-102
    • /
    • 2018
  • Electronic industry had required the finer size and the higher performance of the device. Therefore, 3-D die stacking technology such as TSV (through silicon via) and micro-bump had been used. Moreover, by the development of the 3-D die stacking technology, 3-D structure such as chip to chip (c2c) and chip to wafer (c2w) had become practicable. These technologies led to the appearance of HBM (high bandwidth memory). HBM was type of the memory, which is composed of several stacked layers of the memory chips. Each memory chips were connected by TSV and micro-bump. Thus, HBM had lower RC delay and higher performance of data processing than the conventional memory. Moreover, due to the development of the IT industry such as, AI (artificial intelligence), IOT (internet of things), and VR (virtual reality), the lower pitch size and the higher density were required to micro-electronics. Particularly, to obtain the fine pitch, some of the method such as copper pillar, nickel diffusion barrier, and tin-silver or tin-silver-copper based bump had been utillized. TCB (thermal compression bonding) and reflow process (thermal aging) were conventional method to bond between tin-silver or tin-silver-copper caps in the temperature range of 200 to 300 degrees. However, because of tin overflow which caused by higher operating temperature than melting point of Tin ($232^{\circ}C$), there would be the danger of bump bridge failure in fine-pitch bonding. Furthermore, regulating the phase of IMC (intermetallic compound) which was located between nickel diffusion barrier and bump, had a lot of problems. For example, an excess of kirkendall void which provides site of brittle fracture occurs at IMC layer after reflow process. The essential solution to reduce the difficulty of bump bonding process is copper to copper direct bonding below $300^{\circ}C$. In this study, in order to improve the problem of bump bonding process, copper to copper direct bonding was performed below $300^{\circ}C$. The driving force of bonding was the self-annealing properties of electrodeposited Cu with high defect density. The self-annealing property originated in high defect density and non-equilibrium grain boundaries at the triple junction. The electrodeposited Cu at high current density and low bath temperature was fabricated by electroplating on copper deposited silicon wafer. The copper-copper bonding experiments was conducted using thermal pressing machine. The condition of investigation such as thermal parameter and pressure parameter were varied to acquire proper bonded specimens. The bonded interface was characterized by SEM (scanning electron microscope) and OM (optical microscope). The density of grain boundary and defects were examined by TEM (transmission electron microscopy).

  • PDF