• Title/Summary/Keyword: scanning probe

Search Result 589, Processing Time 0.023 seconds

The Analysis of Measuring Error in OMM System (OMM 시스템에서의 측정오차 해석)

  • 이상준;김선호;김옥현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.5
    • /
    • pp.34-42
    • /
    • 1998
  • This paper describes an analysis of measuring error of on the machine measuring(OMM) system which directly measures machined surface dimensions using scanning probe on a CNC milling machine. 21 inch TV shadow mask mould clamped to a pallet was measured using PTP(point to point) measuring algorithm in OMM system and the results were compared with those using coordinate measuring machine(CMM). The OMM error was evaluated by probe error, stylus contact error, center shift error, repeatability, work-piece clamping error and etc. The results show that elastic deformation of the pallet is most affecting factor on the measuring error, thus pallet design and clamping method need very careful cosiderations.

  • PDF

The Error Source Analysis of Measuring Data of OMM System (OMM 시스템의 측정오차 원인분석 및 대책)

  • 이상준;김선호;김옥현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.73-77
    • /
    • 1997
  • This paper describes the analysis of measuring error of on the machine measuring(OMM) system which can directly measure the three dimensional machined free surface dimension using scanning probe on milling machine. 21 inch TV shadow mask mould was measured using PTP(point to point)measurement algorithm at pallet clamped and unclamped state on OMM system, and using coordinate measuring machine(CMM) one after another. The OMM system was evaluated probe error, stylus contact error, center shift error, repeatability and so on. Consequencely, the conclusion derived that elastic displacement of pallet had effect on measuring error mainly, and pallet design and setup method would be important.

  • PDF

Direct Fabrication of the Scanning Probe Tip with Multi­Walled Carbon Nanotubes Using Dielectrophoresis

  • Lee Hyung-Woo;Han Chang-Soo;Lee Eung-Sug;Chul Youm;Kim Jae Ho;Kim Soo-Hyun;Kwak Yoon-Keun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.50-54
    • /
    • 2005
  • We report a simple, low cost, and reliable method for assembling a multi-walled nanotube (MWNT) to the end of a metal coated scanning probe microscopy (SPM) tip. By dropping the MWNT solution and applying an electric field between an SPM tip and an electrode, MWNTs which were dispersed into a dielectric solution were directly assembled onto the apex of the SPM tip due to the attraction by the dielectrophoretic force. The effective measurement of a MWNT -attached SPM tip was demonstrated by direct comparison with AFM images of a standard sample with a bare AFM tip.

Characterization of Thin Film Materials by Nanoindentation and Scanning Probe Microscopy (나노인덴테이션과 주사탐침현미경을 이용한 박막 재료의 특성평가)

  • Kim, Bong-seob;Yun, Jon-do;Kim, Jong-kuk
    • Korean Journal of Materials Research
    • /
    • v.13 no.9
    • /
    • pp.606-612
    • /
    • 2003
  • Surface and mechanical properties of thin films with submicron thickness was characterized by nanoindentation with Berkovich and Vickers tips, and scanning probe microscopy. Nanoindention was made in a depth range of 15 to 200 nm from the surface by applying tiny force in a range from 150 to $9,000 \mu$N. Stiffness, contact area, hardness, and elastic modulus were determined from the force-displacement curve obtained. Reliability was first tested by using fused quartz, a standard sample. Elastic modulus and hardness values of fused quartz measured were the same as those reported in the literature within two percent of error. Mechanical properties of ITO thin film were characterized in a depth range of 15∼200nm. As indentation depth increased, elastic modulus and hardness decreased by substrate effect. Ion beam deposited DLC thin films were indented in a depth range of 40∼50 nm. The results showed that the DLC thin film using benzene and bias voltage 0∼-50 V has elastic modulus and hardness value of 132 and 18 GPa respectively. Pure DLC thin films showed roughnesses lower than 0.25 nm, but silicon-added DLC thin films showed much higher roughness values, and the wavy surface morphology.

Characterization of Electrical Properties of Si Nanocrystals Embedded in a $SiO_2$ Layer by Scanning Probe Microscopy (SPM (Scanning Probe Microscopy)을 이용한 $SiO_2$ layer에서의 실리콘 나노 크리스탈의 전기적 특성 분석)

  • Kim, Jung-Min;Her, Hyun-Jung;Son, J.M.;Lee, Eun-Hye;Khang, Yoon-Ho;Kang, Chi-Jung;Kim, Yong-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1900-1902
    • /
    • 2005
  • 본 연구에서는 scanning probe microscopy(SPM)을 이용하여 국소영역에서 silicon nanocrystal(Si NC)의 전기적 특성을 분석하였다. Si NCs은 압축된 silicon powder를 laser로 분해하는 laser ablation 방식으로 제조되었고, sharpening oxidation 과정을 통하여 Si NC 주변에 oxide shell을 형성시켰다. 이 과정에서 Si NCs은 $10{\sim}50 nm$의 크기와 약 $10^{11}/cm^2$의 밀도로 $SiO_2$층에 증착되었다. SPM의 conducting tip을 통하여 전하는 각각의 Si NC로 주입되게 되고, 이로 인하여 발생하는 SCM image와 dC/dV curve의 변화를 통하여 Si NC에서 전하 거동을 모니터 하였다. 또한 국소영역에서 Si NC의 전기적 특성을 MOS capacitor 구조에서의 C-V 특성과 비교 분석하였다.

  • PDF

A Flexure Guided Planar Scanner for Scanning Probe Microscope ; Part 2. Evaluation of Static and Dynamic Properties (주사 현미경용 평면 스캐너 Part 2 : 정 · 동 특성 평가)

  • Lee, Moo-Yeon;Gweon, Dae-Gab;Lee, Dong-Yeon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.11 s.104
    • /
    • pp.1295-1302
    • /
    • 2005
  • This paper shows experimental evaluation results of the nano-positioning planar scanner used in the scanning probe microscope. The planar scanner is composed of flexure guides, piezoelectric actuators and feedback sensors as like explained in detail in Ref. (5). First, the fabrication methods were explained. Second, as the static Properties of the Planar scanner. we evaluated the maximum travel range & crosstalk. Also, we presented the correcting method for crosstalk using electric circuits finally. as the dynamic properties of the planar scanner, we evaluated the first resonant frequency. Also, we presented the actual AFM(atomic force microscope) imaging results with up to 2Hz imaging scan rate. Experimental results show that properties of the proposed planar scanner are well enough to be used in SPM applications like AFM.

Polarization State of Scattered Light in Apertureless Reflection-mode Scanning Near-Field Optical Microscopy

  • Cai, Yongfu;Aoyagi, Mitsuharu;Emoto, Akira;Shioda, Tatsutoshi;Ishibashi, Takayuki
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.317-320
    • /
    • 2013
  • We studied the polarization state in an apertureless scanning near-field microscopy (a-SNOM) operating in reflection mode by using three-dimensional Finite-difference Time-domain (FDTD) method. As a result, the electric field around tip apex in the near-field region enhanced four times stronger than the incident light for ppolarization when the tip-sample separation was 10 nm. We find that the p- and s-polarization state is maintained for the scattered light when the probe is perpendicular to the sample. When the probe is not perpendicular to the sample, the polarization state of scattered light will rotate an angle that equals to the inclination angle of probe with p-polarization illumination. On the other hand, the polarization state will not rotate with s-polarization illumination.

Beam-scanning Imaging Needle for Endoscopic Optical Coherence Tomography

  • Yang, Woohyeok;Hwang, Junyoung;Moon, Sucbei
    • Current Optics and Photonics
    • /
    • v.5 no.5
    • /
    • pp.532-537
    • /
    • 2021
  • We present a compact endoscopic probe in a needle form which has a fast beam-scanning capability for optical coherence tomography (OCT). In our study, a beam-scanning OCT imaging needle was fabricated with a 26G syringe needle (0.46 mm in outer diameter) and a thin OCT imaging probe based on the stepwise transitional core (STC) fiber. The imaging probe could freely rotate inside the needle for beam scans. Hence, OCT imaging could be performed without rotation or translation of the needle body. In our design, the structural integrity of the needle's steel tubing was preserved for mechanical robustness. Probing the optical signal was performed through the needle's own window formed at the end. For hand-held operation of our imaging needle, a light and compact scanner module (130 g and 45 × 53 × 60 mm3) was devised. Connected to the imaging needle, it could provide rotational actuation driven by a galvanometer. Because of its finite actuation range, our scanner module did not need a fiber rotary joint which might add undesirable complexity. The beam scan speed was 20 Hz and supported 20 frames per second at the maximum for endoscopic OCT imaging.

position marking technique for data measured in a scanning hall probe system (스캐닝 홀 프로브 측정 시스템의 데이터 측정 위치 표시 기술)

  • Yoo, Jae-Un;Lee, Jae-Young;Jung, Ye-Hyun;Lee, Sang-Moo;Youm, Do-Jun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.3
    • /
    • pp.13-15
    • /
    • 2007
  • We employed home-made position marking module in the scanning Hall probe system. The module is composed of two coils of which gap, a, between wires in a coil is $500{\mu}m$. We appiled 10-35mA of current with 15Hz in the coils and recorded ac corresponding magnetic field signal with respect to measuring time while we measured DC field profiles produced due to superconducting film in a perpendicular magnetic field. We calibrate the position, x, of coils using the measuring time and location of the coils in the holder. The error range was about ${\pm}0.1mm$. We test the module as we applied current of 100A and filed of 1kG in the superconducting tape. It was confirmed that there was no interference between superconducting tape and marking coils.

Gas Flow Rate Dependency of Etching Result: Use of VI Probe for Process Monitoring (가스 유량 변화에 따른 식각 공정 결과: VI Probe 활용 가능성 제안)

  • Song, Wan Soo;Hong, Sang Jeen
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.27-31
    • /
    • 2021
  • VI probe, which is one of various in-situ plasma monitoring sensor, is frequently used for in-situ process monitoring in mass production environment. In this paper, we correlated the plasma etch results with VI probe data with the small amount of gas flow rate changes to propose usefulness of the VI probe in real-time process monitoring. Several different sized contact holes were employed for the etch experiment, and the etched profiles were measured by scanning electron microscope (SEM). Although the shape of etched hole did not show satisfactory relationship with VI probe data, the chamber status changed along the incremental/decremental modification of the amount of gas flow was successfully observed in terms of impedance monitoring.