• Title/Summary/Keyword: sandwich insulation

Search Result 59, Processing Time 0.025 seconds

Performance Requirement of Cast-in-place Concrete with Sandwich Insulation (타설형 콘크리트 중단열 벽체의 요구성능 분석)

  • Park, Jun-Ho;Yu, Jung-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.10-11
    • /
    • 2014
  • Energy load of building affected by insulation performance of building's exterior. and insulation system can be classify interior insulation, exterior insulation, sandwich insulation according to install place of insulation. but within interior insulation system, corner wall and the cross outer wall-slab insulation part may occur thermal bridges. And then, within exterior insulation system is more superior insulation performance than interior insulation, but it has difficult to apply, easily broken at high building because of strong wind load. And also difficult to maintenance exterior insulation system. So, in this study, to found requirement performance of cast-in-place sandwich insulation system that is superior insulation performance and easy construction and maintenance. requirement performance of cast-in-place sandwich insulation system is 1) To avoid thermal bridges in the insulation performance, 2) Both sides concrete wall can be composite action in the structural performance. Because of this study, can develops cast-in-place sandwich insulation system and this insulation system contribute to improve insulation performance of apartment-house and high building.

  • PDF

Structural Performance for Sandwich Insulation of Reinforced-Concrete (현장타설 중단열 RC벽체의 구조적 성능)

  • Park, Jun-Ho;Yu, Jung-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.19-20
    • /
    • 2015
  • Building exterior wall's energy loss is very high rate comparing to all part of a buildings. And it account for upper 40% of cooling and heating load. So many studies conducted improving insulation performance of building's exterior, appeared about sandwich insulation wall which could be gaining merit of traditional insulation method those are exterior insulation and interior insulation. In this study, we inform structural performance of sandwich insulation wall for RC wall. For this, first, we define each wall's role and design sandwich insulation wall. At last, analyze structural performance of sandwich insulation wall. This study can contribute to apply it safely where side wall which toilet, stair area, etc.

  • PDF

Problem Analysis of Sandwich Insulation Wall System (중단열 시스템의 문제점 분석)

  • Park, Jun-Ho;Yu, Jung-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.166-167
    • /
    • 2015
  • Because of energy crisis at all around the world, there is many method and system which for improving energy efficiency has appeared in construction industry. And then, 20% of entire building energy loss is emissed to exterior of buildings, that is important to building's entire energy efficiency. So, many research has been conducted for imporve exterior energy efficiency and generally it called insulation of wall. Method for wall insulation can be classified interior system and exterior system which defined installation place of insulation board whether interior or exterior of structural wall. However, interior system has thermal problem such as thermal-bridge which can be necessarily occur condensation. and exterior system has constructional problem such as difficult to construction because exterior and finish work so expensive construction cost than other insulation method. Thus, sandwich insulation wall system has been appeared for solving these problems. Sandwich insulation system must using wall connecting things because both side walls is divided by center insulation. At this, Through the heat at wall connecter, it can be occured thermal-bridge and broken insulation board when under construction will be bring negative effect by reducing wall thickness and insulation deficit. At this study, we were compared previous sandwich insulation system and analysis these system's problem for develop the improving constructability and performance of sandwich insulation system.

  • PDF

Evaluating Insulation Performance of Form-tie in Sandwich Insulation Wall (폼타이 종류에 따른 중단열 벽체의 단열성능 평가)

  • Park, Jun-Ho;Yu, Jung-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.188-189
    • /
    • 2014
  • Nowadays, many research execute about sandwich-insulation wall for durability of wall and retaining insulation performance. But sandwich-insulation, different exterior and interior insulation, need to form-tie which supporting both side form. And because of it penetrate concrete wall, it is worried about thermal-bridge phenomenon to form-tie. So, this research classify penetration type and buried type and analysis thermal-phenomenon of each type's form-tie and insulation performance. As a result, all form-tie type little occur thermal-bridge but penetration form-tie have superior insulation performance and low U-value.

  • PDF

An Experimental study to Improving the Sound Transmission Loss of Honeycomb sandwich Plates (허니컴 샌드위치판의 투과손실 개선에 관한 실험적 연구)

  • 유영훈;양보석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.92-99
    • /
    • 1998
  • The sound insulation capacity of honeycomb sandwich plates which have relatively higher strength ratios to weight is poorer than those of uniform and another sandwich plates. Therefore, improvement of the sound insulation capacity of the honeycomb sandwich plate which has a meritof lightness is required to use it in automobile and rapid rail road industries. In this study, to improving the sound insulation capacity of the honeycomb sandwich plate, the sound transmission loss of the structure is experimentally investigated by adding a viscoelastic damping layer, The effective add position and thickness of the layer were investigated from the viewpoints of both sound transmission loss and improved sound transmission loss over the frequency range from 800Hz to 10kHz.

  • PDF

Thermal Insulation Properties of Sandwich Panel Core with EPS Bead and Glass Wool (EPS Bead와 유리섬유를 혼입한 샌드위치 패널 심재의 단열 특성)

  • Jeon, Eun-Yeong;Lee, Chang-Woo;Hwang, Woo-Jun;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.77-78
    • /
    • 2022
  • To improve the fire vulnerability of the organic insulation sandwich panel core, which is the main culprit of the large-scale fire disaster, an experiment was conducted to examine the thermal conductivity properties of the core material mixed with the organic insulation material EPS Bead and the inorganic insulation material glass wool. As the Additional ratio of glass wool increased, the thermal conductivity decreased, and it was determined that the replacement of glass wool of 3% or more had little effect on the decrease in thermal conductivity. In addition, it can be seen that the most ideal thermal conductivity is exhibited when 1% Replacement ratio of EPS and 3% glass wool are added. The core material of such organic and inorganic insulation materials is judged to be a core material that can compensate for the fire vulnerability of existing insulation materials. Therefore, in order to determine whether it is used as a core material for sandwich panels, additional studies such as fire resistance experiments and sound absorption experiments are needed in the future.

  • PDF

An Analysis of Factors Influencing Insulation Performance of Inorganic Autoclaved Lightweight Concrete Sandwich Wall Panels Using Shear Connectors (전단연결재를 적용한 무기계 경량기포콘크리트(ALC) 샌드위치 외벽 패널의 단열성능에 미치는 영향요인 분석)

  • Kang, Dong Howa;Kang, Dong Hwa;Shin, Dong Hyeon;Kim, Hyung Joon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.1
    • /
    • pp.79-87
    • /
    • 2018
  • The purpose of this study was to analyze factors influencing insulation performance of inorganic Autoclaved Lightweight Concrete(ALC) sandwich wall panels with the application of shear connectors. To analyze the effect of shear connectors on the thermal performance of sandwich wall panels, heat transfer analysis was conducted by using the three-dimensional heat transfer simulation software. Four types of shear connector such as Pin, Clip, Grid, and Truss were selected for insulation performance analysis. Thermal bridge coefficient was calculated by varying typical panel thickness and shear connector thickness and materials such as steel, aluminum, and stainless steel. The results showed that Grid and Truss type widely distributed along the section of sandwich wall panel had a great influence on the thermal bridge coefficient by changing the influence factors. Based on the results of thermal and structural performance analysis, effective heat transmission coefficient of the sandwich wall panel satisfying the passive house insulation criteria was calculated. As a result, it was found that heat transmission coefficient was increased from $0.132W/m^2{\cdot}K$ to $0.141{\sim}0.306W/m^2{\cdot}K$ depending on the shear connector types and materials. In the majority of cases, the passive house insulation criteria was not satisfied after using shear connectors. The results of this study were likely to vary according to how influence factors were set, but it is important to apply the methods that reduce the thermal bridge when there would be a possibility of greatly affecting the insulation performance.

Insulation Performance Analysis of Exposed Concrete Sandwich Wall (노출콘크리트 중단열 벽체의 단열성능 분석)

  • Yeo, Chang-Jae;Yu, Jung-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.105-106
    • /
    • 2016
  • The study of the sandwich wall with the increasing interest in building energy consumption have been actively conducted. This study designed exposed sandwich wall in the light of energy saving design standard and thermal bridge of share connection. The heat insulating performance was analyzed U-fator using calculation program provided in passive houses association and KS F 2277 (method of measuring thermal insulation of construction component materials).

  • PDF

Evaluation of the Property of adiabatic Insulation for TTX Train with Sandwich Composite bodyshell (샌드위치 복합소재가 적용된 틸팅 차량의 단열 특성 평가 연구)

  • Lee Sang-Jin;Oh Kyung-Won;Jeong Jong-Cheol;Cho Se-Hyun;Seo Soung-il
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.251-256
    • /
    • 2005
  • This study was performed the heat transportation ratio of three types of the following sandwich panel by KS F 2278(2003) ; Type ${\sharp}1$ : Carbon/epoxy Aluminum Honeycomb and Balsa Core Sandwich Panel(Thickness : 37mm), Type ${\sharp}2$ : Carbon/epoxy Aluminum Honeycomb Core Sandwich Panel(Thickness : 57mm), and Type ${\sharp}3$ : Carbon/epoxy Aluminum Honeycomb Core Sandwich Panel(Thickness : 37mm). Also was performed the heat transportation of next three types of the following sandwich panel by KS F2277(2002) ; Type ${\sharp}4$ and ${\sharp}5$ : 27mm, and 35mm thick-Aluminum Honeycomb Sandwich Panels, and Type ${\sharp}6$ : 27mm thick-Foaming Aluminum Sandwich Panel. It is the larger area between the skin and core, the heat transportation ratio is the higher, and when it is composed of the hybrid composite structure, good insulation property was shown.

  • PDF

A Study on the Cone Calorimeter Evaluation Method of Sandwich Panels (복합자재 콘칼로리미터평가방법에 대한 연구)

  • Park, Jung-Woo;Cho, Nam-Wook
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.74-82
    • /
    • 2017
  • Fires in buildings built using sandwich panels are difficult to extinguish, and the damage caused by the fire spreading through the inner core material is extensive. Sandwich panels consist of a nonflammable material on both sides of an insulation material. The types of insulation material include organic and inorganic insulation materials, but the former are used in more than 80% of the case. Organic insulation is economically advantageous compared to inorganic insulation, but it is vulnerable to fire. Therefore, the damage caused by sandwich panel fires is higher than that for general fires. In the case of the noxious gas analyzer test, the panel is tested with three round holes having a diameter of 25 mm, in order to determine the risk of the core material, but the cone calorimeter test is carried out using a sandwich panel. In this study, the cone calorimeter test was conducted to examine the fire risk of the composite material when heated on a nonflammable surface, exposed to the core material through a hole, and heated directly the core material. The type of organic insulation employed was flame retardant EPS (Expanded Polystyrene), and the test specimens were tested in three types of sandwich panel, a perforated sandwich panel and single core material. The purpose of this study is to propose a method of measuring the fire risk of the core materials of composite materials using the cone calorimeter test.