• Title/Summary/Keyword: salt production

Search Result 752, Processing Time 0.03 seconds

Evaluation of Biohydrogen Production Using Various Inoculum Sources (다양한 접종원을 이용한 바이오수소 생산 평가)

  • Geumhee, Kim;Jiho, Lee;Hyoju, Yang;Yun-Yeong, Lee;Yoonyong, Yang;Sungho, Choi;Moonsuk, Hur;Byounghee, Lee;Kyung-Suk, Cho
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.4
    • /
    • pp.557-562
    • /
    • 2022
  • In this study we evaluated biohydrogen production potential as operational parameters (substrate, salt concentration, and temperature) using eight inoculum sources. While the volumetric biohydrogen production rate was significantly affected by temperature and inoculum sources, substrate and salt concentration did not have a significant effect on the biohydrogen production. Mesophilic temperature (37℃) was also found more appropriate for the hydrogen production than thermophilic temperature (50℃). Rate, while the eight inoculum sources, anaerobic digestion sludge exhibited the fastest biohydrogen production. The maximum production rate from anaerobic digestion sludge was 2,729 and 1,385 ml-H2·l-1·d-1 at mesophilic and thermophilic temperature, respectively.

Desulfurization of Sulfur Compounds in City-gas using Metal Salt Impregnated Zeolite (금속이온이 담지 된 제올라이트를 이용한 도시가스 내 부취제 제거)

  • Song, Hirn-Ill;Ko, Chang Hyun;Kim, Jae Chang;Kim, Jong-Nam
    • Korean Chemical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.143-148
    • /
    • 2007
  • In hydrogen production for fuel cell by reforming city-gas, sulfur compounds, odorant in city-gas, are detrimental to reforming catalyst and fuel cell electrodes. We prepared metal salt impregnated ${\beta}-zeolite(BEA)$ to remove sulfur compound in city-gas by adsorption. The sulfur breakthrough adsorption capacity was changed depending on the concentration and species of metal salt. $AgNO_3$ impregnated BEA showed the highest sulfur breakthrough capacity among adsorbents used in this experiment(41.1 mg/g). But metal salt impregnated BEA such as $Ni(NO_3)_2/BEA$, $Fe(NO_3_)_3/BEA$, $Co(NO_3)_2/BEA$ showed a certain amount of sulfur adsorption capacity comparable to $AgNO_3/BEA$. Adsorption temperature effect, desorption study, and x-ray photoelectron spectroscopy analysis revealed that the dominant interaction between metal impregnated adsorbent and sulfur compounds was not chemisorption but physisorption.

Nitrogen and Phosphorus Dynamics in an Salt Marsh in the Nakdong River Estuary (낙동강 하구 염습지 식물군락의 질소 및 인의 동태)

  • Kim Joon-Ho;Hyeong-Tae Mun;Byeong;Kyung-Je Cho
    • The Korean Journal of Ecology
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 1989
  • We studied primary production, nitrogen and phosphorus dynamics in a salt marsh of Okryutung at Nakdong River estuary. The standing biomass in Phragmites longivalvis, Carex scabrifolia and Zoysia sinica stand was $5.48kg/\textrm{m}^2,{\;}1.94kg/\textrm{m}^2{\;}and{\;}1.95kg/\textrm{m}^2$, respectively. The peak above-ground biomass in each stand was $1.99kg/\textrm{m}^2,{\;}0.74kg/\textrm{m}^2{\;}and{\;}1.03kg/\textrm{m}^2$, respectively. Soil nitrogen decreased from the onset of growing seson till July, and then increased. Seasonal patterns of soil phosphorus were different from stand to stand. Nitrogen concentrations of above-ground plant tissus were quite different among the plant species at the very beginning of the growing season, however, they became similar as the plants grow. Seasonal pattern of phosphrous in C. scabrifolia roots was quite different from those other two species. Nitrogen absorbed by plants during season in P. longivalvis, C. scabrifolia and Z. sinicia stand was 224kg/ha, 111kg/ha, 156kg/ha, respectively. Phosphorus taken up by plants was 22kg/ha, 29kg/ha and 21kg/ha, respectively. Because the vascular plants growing at salt marshes can immobilize large quantities of nitrogen and phosphorus, salt marsh vegetation can be sued for preventing the pollution of coastal sea water.

  • PDF

The Effect of Processing Conditions of the Salted and Dried Yellow Corvenia(Gulbi) on n-Nitrosamine(NA) Formation during Its Processing 1. Changes of Amines, Nitrate and Nitrite in the Salted and Dried Yellow Corvenia during Its Processing and Storage (염건조기(굴비)의 가공조건이 n-Nitrosamine(NA)의 생성에 미치는 영향 -1보. 염건조기의 가공.저장중 아민류, 질산염 및 아질산업의 변화-)

  • 이수정;신정혜;김정균;성낙주
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.4
    • /
    • pp.444-451
    • /
    • 1998
  • The changes of amine, nitrate and nitrite nitrogen in yellow corvenia were studied during its processing and storage in order to clarify the precursors of N-nitrosamine(NA) formation in the salted and dried yellow corvenia(Gulbi), prepared y using the different salting method like dry and brine salting by pure and curde salt. As a result, during the processing and storage of Gulbi, DMA and TMA contents were significantly increased in the yellow corvenia. And after 40 days storage the increase rate showed 25.7∼45.7, 3.3∼5.6 times higher than those of 0.3, 2.4mg/kg, respectively, while nitrite contents, during its processing and storage, were scarcely changed in the salted and dried yellow corvenia. During the processing and storage, of Gulbi, DMA and TMA contents were less produced in brine salted and dried yellow corvenia using crude salt than in sample prepared using were scarcely changed in the salted and dried yellow corvenia. During the processing and storage of Gulbi, DMA and TMA contents were less produced in brine salted and dried yellow corvenia using crude salt than in sample prepared using pure salt, while the former were more effective than the latter in inhibiting the production of nitrate and nitrite. Therefore, it was revealed that reduction of NA precursors such as DMA, TMA, nitrate and nitrite were more effective in preparing with the brine salting method than with the dry salting method.

  • PDF

Influence of Salinity Treatment on Seed Germination and Polyamine Synthesis in Barnyard Grass(Echinochloa hispidula) (강피종자의 발아와 폴리아민 생합성에 대한 염류의 영향)

  • Yun, Sol;Lee, Su-Yeon;Lim, Hyo-Jin;Shim, Myoung-Bo;Sung, Jwa-Kyung;Kim, Tae-Wan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.1
    • /
    • pp.19-24
    • /
    • 2004
  • To illuminate the physiological response to salinity, barnyard grass (Echinochloa hispidula) was germinated with high concentration of NaCl and KCL. Duration and promptness of seed germination were observed. Under salt stress, lipid peroxidation and polyamine biosynthesis were also analyzed. It appeared that high salt treatments per se did not provoke an inhibition of germination although the process of germination was significantly delayed. In context of lipid peroxidation and polyamine biosynthesis, we would imply that barnyard grass is tolerant to salinity. The increase in lipid peroxidation and putrescine content was prolonged only for 1 day after saline treatment. It could be concluded that these early acciimulation of putrescine and production of lipid peroxide seems to be associated with salt tolerance in the short-term. The physiological interest of these responses was discussed.

Quality Improvement of Frozen and Chilled Beef biceps femoris with the Application of Salt-bicarbonate Solution

  • Sultana, A.;Nakanishi, A.;Roy, B.C.;Mizunoya, W.;Tatsumi, R.;Ito, T.;Tabata, S.;Rashid, H.;Katayama, S.;Ikeuchi, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.6
    • /
    • pp.903-911
    • /
    • 2008
  • The effects of salt and bicarbonate solution on overall meat quality in beef biceps femoris muscle were investigated with the application of chilling and freezing conditions. Muscles were injected to a target of 120% of original meat weight with a solution containing 1.2 M sodium chloride, 0.25 M sodium bicarbonate and 0.1% ascorbic acid (pH 7.2). Half of the meat samples, considered as chill treatment and chill control, were stored at $4^{\circ}C$ up to five days; while the other half, frozen treatment and frozen control, were kept in a freezer at $-20^{\circ}C$ for seven days. Compared with untreated control, treated meats had higher water holding capacity (p<0.05), lower drip loss (p<0.05) and lower shear force (p<0.07) with higher overall acceptability (p<0.05) in sensory evaluation. Morphological observations demonstrated smooth and gummy meat surface due to the solubilization of myofibrillar proteins and the distortion of connective tissue in treated raw meats; and in the case of cooked meat, treatment caused the fragmentation of myofibrils, which might be responsible for a lower shear value in salt-bicarbonate treated beef biceps femoris muscle.

Effects of red glasswort as sodium chloride substitute on the physicochemical properties of pork loin ham

  • Jeong, Tae-Jun;Kim, Tae-Kyung;Kim, Hyun-Wook;Choi, Yun-Sang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.4
    • /
    • pp.662-669
    • /
    • 2020
  • Objective: This study was conducted to evaluate the effect of red glasswort (RG) (Salicornia herbacea L.) curing on the physicochemical, textural and sensory properties of cooked pork loin ham (M. longissimus thoracis et lumborum). Methods: All treatments were cured with different salt and RG powder levels. RG0 treatment was prepared with only 4% NaCl (w/w) as a control, and RG25, 3% NaCl:1% RG (w/w); RG50, 2% NaCl:2% RG (w/w); RG75, 1% NaCl:3% RG (w/w); RG100, 0% NaCl:4% RG (w/w) treatments were prepared sequentially. All samples were individually vacuum packaged in polyethylene bags and stored for 7 d at 3℃±1℃. Results: The results showed that as the rate of RG substitution increased, pH value, redness, myofibrillar protein solubility, and myofibrillar fragmentation index increased (p<0.05), but salt concentration and shear force decreased (p<0.05). However, there were no significant differences in cooking loss and moisture content. In terms of sensory evaluation, RG100 exhibited higher scores in tenderness and juiciness than RG0 (p<0.05). Conclusion: The partial substitution of NaCl by RG could improve the physicochemical properties, textural and sensory characteristics of cooked pork loin. Therefore, it is suggested that RG as a natural salt replacer could be an effective ingredient for developing low-sodium cured hams.

Effects of Nutrient Levels on Cell Growth and Secondary Carotenoids Formation in the Freshwater Green Alga, Chlorococcum sp.

  • Liu, Bei-Hui;Haizhang, Dao;Lee, Yuan-Kun
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.201-207
    • /
    • 2000
  • The freshwater green alga Chlorococcum sp. grew on NH_4^{+},{\;}NO_3^{-}$, urea, yeast extract, and peptone as the nitrogen source showing similar pattens of growth and secondary carotenoid (SC) production. However, the most suitable nitrogen source for the induction fo SC was urea. The dffects of nutrient levels (urea, phosphate, sulfate, ferrous iron, and salt) on growth and SC production were stydied by varying the concentration of each nutrient in batch cultures. High biomass production was achieved in cultures containing 20-28 mM urea, 4.8-10 mM phosphate, 1.6 mM sulfate, 70 mM phosphate, 1.6 mM sulfate, 170 mM NACl, and $50{\;}\mu\textrm{M}$ iron. The optimum concentrations of nutrients for biomass and for the SC accumulation in biomass were evaluated and the two media for achieving high biomass production and SC production were thus developed. The extent to which each parameter to stimulate the formation of SC in the alga were varied and the potentially improned SC prodution by manipulating the nutrient levels in the modified media were descussed.

  • PDF

Improved Production of Curdlan with Concentrated Cells of Agrobacterium sp.

  • Jung, Dae-Young;Cho, Young-Su;Chung, Chung-Han;Jung, Dai-Il;Kim, Kwang;Lee, Jin-Woo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.2
    • /
    • pp.107-111
    • /
    • 2001
  • The addition of a limited concentration of yeast extract to a minimal salt medium (MSM) enhanced cell growth and increased the production of curdlan whereas nitrogen-limitation was found to be essential for the higher production of curdlan by Agrobacterium sp. ATCC 31749. As the amount of the inoculum increased, the cell growth as well as the production of curdlan also increased in the MSM without a nitrogen source. The cell growth and production of curdlan increased as the initial pH of the medium decreased as low as 5.0. The conversion rate and concentration of curdlan from 2% (w/v) glucose in the MSM with concentrated cells under nitrogen deletion was 67% and 13.4 g/L, respectively. The highest conversion rate of curdlan under the conditions optimized in this study was 71% when the glucose concentrations was 1% (w/v).

  • PDF

Effect of Salt Concentration on the Aerobic Biodegradability of Sea Food Wastewater (수산물 가공폐수의 호기성 생분해도에 미치는 염분농도의 영향)

  • Choi, Yong-Bum;Kwon, Jae-Hyouk;Rim, Jay-Myung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.3
    • /
    • pp.256-263
    • /
    • 2010
  • The study was performed to evaluate the effects of chloride concentrations on the ultimate aerobic biodegradability and to use the result as the fundamental data for sea food wastewater treatment. When the organic removal efficiency by chloride concentrations (1,400~18,000 mg/L) was evaluated, microbes adapted to the saline at ${\leq}$ 6,000 mg/L of chloride but treatment efficiency was not improved at ${\geq}$ 12,000 mg/L of chloride because of delayed reaction time. Functional coefficient $Y_I$ of non-biodegradable soluble organic and inert material production coefficient Yp by microbe metabolism increased as chloride concentrations increased. Soluble organic matter ratio by chloride concentration (0~18,000 mg/L) was 10.8~13.1%, inert material production efficiency by microbes metabolism was evaluated as 7.0~24.6%. $NH_3$-N removal efficiencies were 96.2, 96.5, 90.2 and 90.3% using original wastewater HRT 18 hr, 6,000 mg/L chloride concentration HRT 22 hr, 12,000 mg/L chloride concentration HRT 30 hr, and 18,000 mg/L chloride concentration HRT 45 hr, respectively. Nitrification process was more sensitive to salt concentration than organic matter removal to salt concentration. Under ${\geq}$ 6,000 mg/L chloride concentration, conversion rate from $NO_s$-N to $NO_2$-N was low.