DOI QR코드

DOI QR Code

Evaluation of Biohydrogen Production Using Various Inoculum Sources

다양한 접종원을 이용한 바이오수소 생산 평가

  • Geumhee, Kim (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Jiho, Lee (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Hyoju, Yang (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Yun-Yeong, Lee (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Yoonyong, Yang (Biological and Genetic Resources Assessment Division, National Institute of Biological Resources) ;
  • Sungho, Choi (Biological and Genetic Resources Assessment Division, National Institute of Biological Resources) ;
  • Moonsuk, Hur (Biological and Genetic Resources Assessment Division, National Institute of Biological Resources) ;
  • Byounghee, Lee (Biological and Genetic Resources Assessment Division, National Institute of Biological Resources) ;
  • Kyung-Suk, Cho (Department of Environmental Science and Engineering, Ewha Womans University)
  • 김근희 (이화여자대학교 환경공학과) ;
  • 이지호 (이화여자대학교 환경공학과) ;
  • 양효주 (이화여자대학교 환경공학과) ;
  • 이윤영 (이화여자대학교 환경공학과) ;
  • 양윤용 (국립생물자원관 유용자원분석과) ;
  • 최성호 (국립생물자원관 유용자원분석과) ;
  • 허문석 (국립생물자원관 유용자원분석과) ;
  • 이병희 (국립생물자원관 유용자원분석과) ;
  • 조경숙 (이화여자대학교 환경공학과)
  • Received : 2022.10.20
  • Accepted : 2022.11.30
  • Published : 2022.12.28

Abstract

In this study we evaluated biohydrogen production potential as operational parameters (substrate, salt concentration, and temperature) using eight inoculum sources. While the volumetric biohydrogen production rate was significantly affected by temperature and inoculum sources, substrate and salt concentration did not have a significant effect on the biohydrogen production. Mesophilic temperature (37℃) was also found more appropriate for the hydrogen production than thermophilic temperature (50℃). Rate, while the eight inoculum sources, anaerobic digestion sludge exhibited the fastest biohydrogen production. The maximum production rate from anaerobic digestion sludge was 2,729 and 1,385 ml-H2·l-1·d-1 at mesophilic and thermophilic temperature, respectively.

본 연구에서는 토양, 담수 및 염수 퇴적물, 슬러지 등 8종의 접종원을 이용하여 배양인자(기질종류, 염농도, 배양온도)에 따른 바이오수소 생산 잠재능을 평가하고 최적조건을 도출하고자 하였다. 각 접종원 별 바이오수소 생산속도는 배양온도와 접종원 종류에 의해 유의한 영향을 받았다. 반면 기질종류와 염농도는 바이오수소 생산속도에 대체로 유의한 영향을 끼치지 않았다. 고온(50°)보다 중온(37℃)의 배양 온도가 수소 생산에 더 적합하였으며, 8종의 접종원 중에서 중에서는 혐기소화슬러지의 수소 생산능이 가장 우수하였다. 혐기소화슬러지의 최대 수소 생산속도는 중온(37℃)과 고온(50℃)에서 각각 2,729.0 및 1,384.7 ml-H2·l-1·d-1였다.

Keywords

Acknowledgement

This work was supported by a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIBR202221103).

References

  1. Saravanan A, Senthil Kumar P, Khoo SK, Show PL, Femina Carolin C, Fetcia Jackulin C, et al. 2021. Biohydrogen from organic wastes as a clean and environment friendly energy source: Production pathways, feedstock types, and future prospects. Bioresour. Technol. 342: 126021. 
  2. Cheng D, Ngo HH, Guo W, Chang SW, Nguyen DD, Deng L, et al. 2022. Advanced strategies for enhancing dark fermentative biohydrogen production from biowaste towards sustainable environment. Bioresour. Technol. 351: 127045. 
  3. Preethi, Usman TMM, Banu JR, Gunasekaran M, Kumar G. 2019. Biohydrogen production from industrial wastewater: An overview. Bioresour. Technol. Rep. 7: 100287. 
  4. Banu JR, Usman TMM, Kavitha S, Kannah RY, Yogalakshmi KN, Sivashanmugam P, et al. 2021. Critical review on limitation and enhancement strategies associated with biohydrogen production. Int. J. Hydrog. Energy 46: 16565-16590.  https://doi.org/10.1016/j.ijhydene.2021.01.075
  5. Kim H, Im S, Mostafa A, Prakash O, Kim DH. 2021. Analysis of biohydrogen production potential from organic wastes generated in Korea. J. Korean Soc. Environ. Eng. 43: 591-600.  https://doi.org/10.4491/KSEE.2021.43.9.591
  6. Dawood F, Anda M, Shafiullah GM. 2020. Hydrogen production for energy: An overview. Int. J. Hydrog. Energy 45: 3847-3869.  https://doi.org/10.1016/j.ijhydene.2019.12.059
  7. Liu D, Sun Y, Li Y, Lu Y. 2017. Perturbation of formate pathway and NADH pathway acting on the biohydrogen production. Sci. Rep. 7: 9587. 
  8. Srivastava N, Srivastava M, Abd-Allah EF, Hashem A, Gupta VK. 2021. Biohydrogen production using kitchen waste as the potential substrate: A sustainable approach. Chemosphere 271: 129537. 
  9. Wang H, Xu J, Sheng L, Liu X, Lu Y, Li W. 2018. A review on biohydrogen production technology. Int. J. Energy Res. 42: 3442-3453.  https://doi.org/10.1002/er.4044
  10. Wong YM, Wu TY, Juan JC. 2014. A review of sustainable hydrogen production using seed sludge via dark fermentation. Renewable. Sustain. Energy Rev. 34: 471-482.  https://doi.org/10.1016/j.rser.2014.03.008
  11. Yin Y, Hu J, Wang J. 2014. Gamma irradiation as a pretreatment method for enriching hydrogen-producing bacteria from digested sludge. Int. J. Hydrog. Energy 39: 13543-13549.  https://doi.org/10.1016/j.ijhydene.2014.01.147
  12. National Institute of Environmental Research. 2012. Study on integrated management of organic waste. Available from https: //doi.org/10.23000/TRKO201700008276. Accessed Oct. 18, 2022. 
  13. Cakr A, Ozmihci S, Kargi F. 2010. Comparison of bio-hydrogen production from hydrolyzed wheat starch by mesophilic and thermophilic dark fermentation. Int. J. Hydrog. Energy 35: 13214-13218.  https://doi.org/10.1016/j.ijhydene.2010.09.029
  14. Wongthanate J, Chinnacotpong K, Khumpong M. 2014. Impacts of pH, temperature, and pretreatment method on biohydrogen production from organic wastes by sewage microflora. Int. J. Energy Environ. Eng. 5: 1-6.  https://doi.org/10.1186/2251-6832-5-1
  15. Luo Y, Zhang H, Salerno M, Logan BE, Bruns MA. 2008. Organic loading rates affect composition of soil-derived bacterial communities during continuous, fermentative biohydrogen production. Int. J. Hydrog. Energy 33: 6566-6576.  https://doi.org/10.1016/j.ijhydene.2008.08.047
  16. Iyer P, Bruns MA, Zhang H, van Ginkel S, Logan BE. 2004. H2-producing bacterial communities from a heat-treated soil inoculum. Appl. Microbiol. Biotechnol. 66: 166-173.  https://doi.org/10.1007/s00253-004-1666-7
  17. Lee KS, Lin PJ, Chang JS. 2006. Temperature effects on biohydrogen production in a granular sludge bed induced by activated carbon carriers. Int. J. Hydrog. Energy 31: 465-472.  https://doi.org/10.1016/j.ijhydene.2005.04.024
  18. Mu Y, Zheng, XJ, Yu HQ, Zhu RF. 2006. Biological hydrogen production by anaerobic sludge at various temperatures. Int. J. Hydrog. Energy 31: 780-785.  https://doi.org/10.1016/j.ijhydene.2005.06.016
  19. Wang J, Wan W. 2008. Effect of temperature on fermentative hydrogen production by mixed cultures. Int. J. Hydrog. Energy 33: 5392-5397.  https://doi.org/10.1016/j.ijhydene.2008.07.010
  20. Shi XY, Jin DW, Sun QY, Li WW. 2010. Optimization of conditions for hydrogen production from brewery wastewater by anaerobic sludge using desirability function approach. Renew. Energy 35: 1493-1498.  https://doi.org/10.1016/j.renene.2010.01.003
  21. Wang J, Wan W. 2011. Combined effects of temperature and pH on biohydrogen production by anaerobic digested sludge. Biomass Bioenerg. 35: 3896-3901. https://doi.org/10.1016/j.biombioe.2011.06.016