• Title/Summary/Keyword: salinity of shelf water

Search Result 26, Processing Time 0.023 seconds

Distribution and Vertical Structures of Water Masses around the Antarctic Continental Margin

  • Kim, Seong-Joong;Lee, Bang-Yong
    • Ocean and Polar Research
    • /
    • v.27 no.3
    • /
    • pp.277-288
    • /
    • 2005
  • Spatial distribution and vertical structures of water masses around the Antarctic continental margin are described using synthesized hydrographic data. Antarctic Surface Water (AASW) over the shelf regime is distinguished from underlying other water masses by the cut-off salinity, varying from approximately 34.35 to 34.45 around Antarctica. Shelf water, characterized by salinity greater than the cut-off salinity and potential temperature less than $-17^{\circ}C$, is observed on the Ross Sea, off George V Land, off Wilkes Land, the Amery Basin, and the Weddell Sea, but in some shelves AASW occupies the entire shelf. Lower Circumpolar Deep Water is present everywhere around the Antarctic oceanic regime and in some places it mixes with Shelf Water, producing Antarctic Slope Front Water (ASFW). ASFW, characterized by potential temperature less than about $0^{\circ}C$ and greater than $-17^{\circ}C$, and salinity greater than the cut-off salinity, is found everywhere around Antarctica except in the Bellingshausen-Amundsen sector. The presence of different water masses over the Antarctic shelves and shelf edges produces mainly three types of water mass stratifications: no significant meridional property gradient in the Bellingshausen and Amundsen Seas, single property gradient where ASFW presents, and a V-shaped front where Shelf Water exists.

The origin of dissolved inorganic nutrients by Kuroshio Intermediate Water in the eastern continental shelf of the East China Sea (동중국해 외대륙붕 저층수의 영양염 기원)

  • Chung Chang Soo;Hong Gi Hoon;Kim Suk Hyun;Kim Yong Il;Moon Duk Soo;Park Jun Kun;Park Yong Chul;Lee Jae Hak;Lie Heung Jae
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.3
    • /
    • pp.13-23
    • /
    • 2000
  • The distributions of dissolved inorganic nutrient contents were investigated along transection line J (30° N) in the eastern East China Sea in December 1993 and August 1994, respectively. The concentrations of nitrate and silicate in the Kuroshio Surface Water (KSW) with high temperature and high salinity were low below 2μM and 5μM, respectively. However, these were increased sharply with depth and ranged from 20 to 40, 45 to 100μM, respectively, in the Kuroshio Intermediate Water (KIW). The relationship between temperature and nutrients suggests that Kuroshio Intermediate Water with rich nutrients were intruded into the bottom water of the outer continental shelf in the East China Sea. The bottom water of the outer continental shelf was made of two end-members mixing; nutrient depleted warm water and nutrient enriched cold water. Based on temperature, salinity and silicate concentration, the nutrients in the bottom water of the outer continental shelf suggusted to be supplied through the vertical mixing of Kuroshio subsurface water in the depth range of 100~400m. Upwelled nutrient rich water appears to be a important source of nutrients for primary production in the continental shelf area of the East China Sea.

  • PDF

Characteristics of the Oceanographic Environment in the Aleutian Basin of the Bering Sea during Spring (춘계 베링해 알류산 해분의 해양환경 특성)

  • Choi, Seok-Gwan;Oh, Taeg Yun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.2
    • /
    • pp.201-215
    • /
    • 2013
  • The characteristics of the oceanographic environment in the Aleutian Basin of the Bering Sea during spring in 1996, 1997, and 1999 were clarified. An investigation of the water properties revealed five basic layers in the Bering Sea during spring: (1) a surface layer of warm and low-salinity water induced by solar heating, (2) a subsurface layer of cold and low-salinity water propagated slowly by heat from the surface layer, (3) a thermocline layer where salinity was constant but temperature sharply decreased, (4) a temperature inversion layer, and (5) a deep layer with a gradual decrease in temperature and increase in salinity toward the bottom. The ranges of water temperature and salinity were $1.8-5.5^{\circ}C$ and 31.81-34.08 in 1996, $1.5-7.2^{\circ}C$ and 31.9-34.06 in 1997, and $0.5-5.6^{\circ}C$ and 32.0-34.11 in 1999, respectively. The water temperature of the surface layer was approximately $1.6^{\circ}C$ higher in 1997 than in 1996 and 1999. The lowest temperature at a depth of 100-150 m was about $1^{\circ}C$ lower in 1999 than in 1996 and 1997. Nutrient levels (nitrate, phosphate, and silicate) contributing to the control of the growth of phytoplankton were higher in the Aleutian Basin than in the eastern continental shelf and Bogoslof Island area. This was closely associated with the phytoplankton distribution. Nutrient concentrations were lowest at a depth of 25 m. The high primary production at that depth was confirmed from the vertical distribution of chlorophyll a. Chlorophyll a levels were above $4.0{\mu}L^{-1}$ in some areas in 1996 and 1999, but below $2.0{\mu}L^{-1}$ in most areas in 1997. Zooplankton density was about three times higher in 1999 than in 1997.

Numerical Simulation of Ocean - Ice Shelf Interaction: Water Mass Circulation in the Terra Nova Bay, Antarctica (해양-빙붕 상호작용을 고려한 남극 테라노바 만에서 수괴 형성과 순환의 수치 시뮬레이션)

  • Taekyun, Kim;Emilia Kyung, Jin;Ji Sung, Na;Choon Ki, Lee;Won Sang, Lee;Jae-Hong, Moon
    • Ocean and Polar Research
    • /
    • v.44 no.4
    • /
    • pp.269-285
    • /
    • 2022
  • The interaction between ocean and ice shelf is a critical physical process in relation to water mass transformations and ice shelf melting/freezing at the ocean-ice interface. However, it remains challenging to thoroughly understand the process due to a lack of observational data with respect to ice shelf cavities. This is the first study to simulate the variability and circulation of water mass both overlying the continental shelf and underneath an ice shelf and an ice tongue in the Terra Nova Bay (TNB), East Antarctica. To explore the properties of water mass and circulation patterns in the TNB and the corresponding effects on sub ice shelf basal melting, we explicitly incorporate the dynamic-thermodynamic processes acting on the ice shelf in the Regional Ocean Modeling System. The simulated water mass formation and circulation in the TNB region agree well with previous studies. The model results show that the TNB circulation is dominated by the geostrophic currents driven by lateral density gradients induced by the releasing of brine or freshwater at the polynya of the TNB. Meanwhile, the circulation dynamics in the cavity under the Nansen Ice shelf (NIS) are different from those in the TNB. The gravity-driven bottom current induced by High Salinity Shelf Water (HSSW) formed at the TNB polynya flows towards the grounding line, and the buoyance-driven flow associated with glacial meltwater generated by the HSSW emerges from the cavity along the ice base. Both current systems compose the thermohaline overturning circulation in the NIS cavity. This study estimates the NIS basal melting rate to be 0.98 m/a, which is comparable to the previously observed melt rate. However, the melting rate shows a significant variation in space and time.

Modeling of internal wave generation near a shelf slope by ocean finite element method

  • Lee, Kwi-Joo;Joa, Soon-Won;Eom, Ki-Chang
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.42 no.1
    • /
    • pp.38-43
    • /
    • 2006
  • The 3-D modeling of ocean finite element method(OFEM) using $k-{\varepsilon}$ turbulent model and tetrahedron grids has been used to investigate the internal wave generation during the expansion of the deep water from the open sea to the shelf with a simple shape, which can be widely used in the fields of submarine development, ocean environment and meteorology, etc. In this paper, the detailed configuration of internal wave with its length and height and also the distribution of salinity and turbulent kinematic energy, etc. were derived. It is hoped that this OFEM method can be successfully applied to the numerical calculation of internal wave for and the oceanographic problems (tidal flows around underwater hill, plateau, Georges Bank, etc.) and ocean engineering problems(flow past artificial sea reefs) in future.

The Fluctuation Characteristics of the Water Mass and the Current Structure of the Southeastern Region of The East Sea

  • Lee Chung Il;Cho Kyu Dae
    • Fisheries and Aquatic Sciences
    • /
    • v.3 no.2
    • /
    • pp.97-110
    • /
    • 2000
  • To investigate characteristics of water masses and current structures around Noto Peninsula located in south-east coastal region of the East Sea, observation results of CREAMS (Circulations Research of the East Asian Marginal Seas) cruise and data report of oceanographic observation (Japan Meteorological Agency) in June, 1995 and 1996 were used. Water mass showing characteristics of Tsushima Warm Current (TWC) exists over the continental shelf. The depth is shallower than 200m and its width and thickness are 190km and 200m, respectively. Minimum level of dissolved oxygen occurred at the layers of maximum salinity. In the current structure, a noteworthy phenomenon is that the positions of the high-salinity water (more than 34.6 psu) match well with the distributions of the southwestward flow. In June of 1995 and June of 1996, a southwestward flow were separated into two parts along line C and line G. Current directions derived from the temperature and salinity match well with the distributions of the geostrophic currents in the vertical sections. The isothermal lines and the isohaline, which exist horizontally along the coastal area of the Japan, change abruptly at the frontal area of the Noto Peninsula, then turn toward the center of the East Sea. The dynamic depth anomalies centering around the region far northwest of the Noto Peninsula were relatively high, compared to those of other regions. The isopycnic surface (sigma-t, 25.8) existed near the surface in the central part of the East Sea, but, at the depth of 100m, the isopycnic surface was found in the coastal waters.

  • PDF

The Controlling factors of Ra Isotopes in Masan Bay (마산만에서 Ra 동위원소의 농도를 결정하는 인자)

  • Kim Young Ill;Chung Chang Soo;Kim Suk Hyun;Moon Duk Soo;Park Jun Kun;Seo Sung Mo;Choi Jun Sun;Yang Dong Beom;Hong Gi Hoon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.2
    • /
    • pp.25-34
    • /
    • 2001
  • /sup 226/Ra and /sup 228/Ra analysis were carried out at the representative station of Masan Bay from May to August, 1999. The high activities of /sup 226/Ra and /sup 228/Ra in the surface water were appeared in rainy season (August, 1). However, there is no significant variation in concentrations in the other season. A high negative linear correlation between /sup 226/Ra activities and salinity in the surface water suggests that /sup 226/Ra activity in the surface water was controlled by simple mixing between the two end-members low salinity high /sup 226/Ra activity water of inner Bay and a high salinity low /sup 226/Ra activity water of the continental shelf water out of Bay. /sup 226/Ra activities below the surface mixed layer were higher than those of expected level from the /sup 226/Ra versus salinity. And also /sup 228/Ra//sup 226/Ra ratios in the bottom water were lower compared to those in surface water due to the presence of potential source of /sup 226/Ra below the surface mixed layer. However, it is known that /sup 228/Ra compared to /sup 226/Ra is enriched in bottom sediments and pure water. Therefore, the most probable sources for low /sup 228/Ra//sup 226/Ra activity ration is submarine ground water discharge. Further studies are required to quantify the various sources of /sup 226/Ra and /sup 228/Ra and their relative contributions.

  • PDF

Distribution of the East Sea Intermediate Water in November 1994 (1994년 11월 동해 중층수의 분포)

  • CHOI Yong-Kyu;CHO Kyu-Dae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.1
    • /
    • pp.119-127
    • /
    • 1997
  • In order to investigate the distribution of the last Sea Intermediate Water (ESIW), CTD measurement was peformed in the last Sea of Korea during $8\~11$ November, 1994. ESIW was $2.0\~2.3^{\circ}C$ in potential temperature, $34.04\~34.06\%_{\circ}$ in salinity and $5.6\~6.1\;ml/l$ in of gen content on the isopycnic surface of 27.2 in potential density. The isopycnic surface of 27.2 which represented the layer of ESIW became shallower from about 200 m depth in the open sea to about 140 m depth near the coast. off the coast of Jukbyun, the 27.2 isopycnic surface was located at the depth of about 120 m and had a little higher potential temperature and salinity, lower oxygen content than those in the open sea. The ESIW on the continental shelf was higher about 0.8 ml/l in AOU, 0.02 in salinity than those of the ESIW in the open sea. These suggest that the ESIW on the continental shelf did not come from the North Korean Cold Water but originated from the open sea.

  • PDF

Temporal and Spatial Variability of Chlorophyll a in the Northern East China Sea using Ocean Color Images in Summer (해색영상을 이용한 동중국해 북부해역 하계 클로로필 a의 시공간 분포)

  • Kim, Sang-Woo;Lim, Jin-Wook;Jang, Lee-Hyun
    • Journal of Environmental Science International
    • /
    • v.17 no.1
    • /
    • pp.85-95
    • /
    • 2008
  • Temporal and spatial variabilities of chlorophyll a (Chl-a) in the northern East China Sea (ECS) are described, using both 8-day composite images of the SeaWiFS (Sea-viewing Wide Field-of-view Sensor) and in-situ data investigated in August and September during 2000-2005. Ocean color imagery showed that Chl-a concentrations on the continental shelf within the 50 m depth in the ECS were above 10 times higher than those of the Kuroshio area throughout the year. Higher concentrations (above $5mg/m^3$) of yearly mean Chl-a were observed along the western part of the shelf near the coast of China. The standard deviation also showed the characteristics of the spatial variability near $122-124^{\circ}E$, where the western region of the East China Sea was grater than that of the eastern region. Particularly the significant concentration of Chl-a, up to $9mg/m^3$, was found at the western part of $125^{\circ}E$ in the in-situ data of 2002. The higher Chl-a concentrations of in-situ data were consistent with low salinity waters of below 30 psu. It means that there were the close relationship between the horizontal distribution of Chl-a and low salinity water.

Regional Comparisons of Heterotrophic Protists Grazing Impacts and Community in Northwest Pacific Ocean (북서태평양에서 종속영양 원생생물 군집 및 섭식압의 해역별 비교)

  • Yang, Eun-Jin;Ju, Se-Jong;Kim, Woong-Seo
    • Ocean and Polar Research
    • /
    • v.30 no.3
    • /
    • pp.289-301
    • /
    • 2008
  • Community structure of heterotrophic protists and their grazing impact on phytoplankton were studied in Northwest Pacific Ocean during October, 2007. The study area was divided into four regions based on physical properties (temperature and salinity) and chlorophyll-a distribution. They were Region I of North Equatorial Currents, Region II of Kuroshio waters, Region III of shelf mixed water, and Region IV of Tsushima warm current from East China Sea. The distribution of chlorophyll-a concentrations and community structure of heterotrophic protists were significantly affected by physical properties of the water column. The lowest concentration of chlorophyll-a was identified in Region I and II, where pico-sized chlorophyll-a was most dominant (>80% of total chlorophyll-a). Biomass of heterotrophic protists was also low in Region I and II. However, Region III was characterized by low salinity and temperature and high chlorophyll-a concentration, with relatively lower pico-sized chlorophyll-a dominance. The Highest biomass of heterotrophic protists appeared in Region III, along with the relatively less important nanoprotists. In Region I, II and IV, heterotrophic dinoflagellates were dominant among the protists, while ciliates were dominant in Region III. Community structure varied with physical(salinity and temperature) and biological (chlorophyll-a) properties. Biomass of heterotrophic protists correlated well with chlorophyll-a concentration in the study area ($r^2=0.66$, p<0.0001). The potential effect of grazing activity on phytoplankton is relatively high in Region I and II. Our result suggest that biomass and size structure of heterotrophic protists might be significantly influenced by phytoplankton size and concentration.