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Modeling of internal wave generation near a shelf slope

by ocean finite element method

Kwi-Joo LEE, Soon-Won Joa* and Ki Chang Eom

Department of Naval Architecture & Ocean Engineering, Chosun University, Gwangju 501-759, Korea

The 3-D modeling of ocean finite element method(OFEM) using k-¢ turbulent model and tetrahedron grids has

been used to investigate the internal wave generation during the expansion of the deep water from the open sea to

the shelf with a simple shape, which can be widely used in the fields of submarine development, ocean

environment and meteorology, etc. In this paper, the detailed configuration of internal wave with its length and

height and also the distribution of salinity and turbulent kinematic energy, etc. were derived. It is hoped that this

OFEM method can be successfully applied to the numerical calculation of internal wave for and the oceanographic

problems (tidal flows around underwater hill, plateau, Georges Bank, etc.) and ocean engineering problems(flow

past artificial sea reefs) in future.
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Introduction

It is known that Internal wave is generated in the
interior of the ocean when the water body consists of
layers of different density and it has the huge energy.
Thus recently various studies on it are being done for
the applicability in the field of submarine development,
ocean environment and meteorology, etc.

In this paper representing the basic step of the study
on the numerical calculation of internal wave, the 3 —
D modeling of ocean finite element method using k —
€ turbulent model and tetrahedron grids has been set
up to investigate the internal wave generation during
the expansion of the deep water from the open sea to
the shelf and then the numerical calculation of internal
wave is tried to execute with the discussion of
calcula — tion results. Using this OFEM, the detailed
configura — tion of internal wave with its length and

height was successfully derived and also the

distribution of salinity and turbulent kinematic energy,

etc. were discussed.

Topography of a shelf and the
configuration of generated grids
The topography of the shelf for the numerical
calculation in this paper is the simple shape of a
square pillar of 4,000m X 220m X 10,000m as shown
in Fig.1, where the configuration of the section of the
shelf is a quadrilateral with an about 80° declination

of one side. the period of the tide with 12.4 hours is

220m’ *shelf size ;
4000m X 220m X 10,000m

80°

4000m .

Fig. 1. Configuration of the shelf.

(unit : m)
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Fig. 2. Configuration of grids generated near the shelf zone.

used as the M2 Tidal forcing.

And the tidal velocity(u) toward the shelf is assu
med as 0.6 m/sec.

Grids are generated over the range of x —axis= —
60,000~40,000 m(space =200), y —axis=0~
5,000m(space = 13), z — axis =0~2,800 m(space =
10) respectively.

Then near the shelf zone the nest grids are thickened
up to 4 m in the horizontal and 1 m in the vertical
direction for better performance of numerical calcul

ation as shown in Fig. 2.

The basic equations
The basic equations have been cast in modified

sigma coordinate system
X1=x,x0=y,0=a-zt=t (D)

The constant a is a scale factor that is relation of
horizontal dimension to vertical one. After conversion

to sigma coordinates, the basic equations may be

written,
ou; ow
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where, u; is component of horizontal velocity, w is
vertical component of velocity, p pressure, p density,
ve vertical eddy viscosity, vy horizontal eddy
viscosity, f parameter of Carioles, f&;u; component of
asymmetric tensor.

The pressure p can be separated on hydrostatic and
non — hydrostatic(dynamic) parts (Mahadevan et al.,
1996)

p=ps+pp, 3
where
pu= |, pgdz )

is hydrostatic part and pp is dynamic part, { is free
surface elevation, respectively. The transport equations

for salinity and temperature is written as
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where is P, Prandtl number. The vertical eddy viscosity
ve can be expressed as a sum of molecular viscosity v
and turbulent viscosity v.. So, according to Kolmogorov’

hypothesis we have
K
ve=v+v,=v+c,,T (7)

where, & is turbulent kinetic energy, and € its
dissipation rate, C,= 0.09. The dissipation rate can be
represented in the form £=k/A, where / is turbulent
scale. It is useful for the definition of initial value of
dissipation rate. The turbulent parameters are the
scalars and can be found from transport equations

oK oK oK

+aws— =

o T T "0
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where Pri;=1.0, Pre=1.3. This closure is known as
“k — £” model of turbulence [Mathieu and Scott,
2000]. The term P is production of turbulence due to
stresses.

The horizontal eddy viscosity is defined according

to subgrid scale model of Smagorinsky

V= (CSA)|2 3 ) ("o

(10)
where C;=0.17, As filter width.

Numerical approximation
Splitting scheme
The difficult of the pressure calculation can be
overcome by applying of splitting schemes. Let us

introduce the following symbols

] ad d ]
Adv=uj—. 5 sz 8 Ve = ™ , Grad= e
According to Hirt' splitting scheme the intermediate

values of velocity find from equations (Fletcher, 1991)

. 1
‘ t”’ +Adu = =~ Grad '+ Dif (11)
where At is time step. The resulting values of velocity

are corrected following procedure.

o~
uf =u;—

At/ p Grad (8p) (12)

where p is pressure correction and solution of Poisson

equation

A ¥(Sp)
p od oy

(In

Finite element approximation
We define every unknown variable as the following

scalar function.
o=[u,p, k, €] : Qx[0,T] >R

Then, problem (1) —(9) can be rewritten in gener-

alization form

a—(f—Fi V,'Di(p— ZD[VgDiq,:f
i=1

in Q=0x[0,T],n=3 (14)

=¢ in 'x[0, 7] (15)

O(x, 0) = @o(x) in 2 (16)
where

D,~=8/ax,», Ve=v+ Cn kz/(€+£0)’

¢ is the boundary condition, gy(x) is the initial condition.
The Galerkin’ s finite element method can be applied to
the equation (14). Approximation of the second order of
accuracy can be obtained at the tetrahedron element.
This element allows a simple construction of a grid in
the complex domain. In the present study we use the

following basic functions (Norrie and De Vries, 1978).

1
Qi=——— (a5 +ax+cy+diz) 17
6Ve
where

L x1 » =z
1 x2 y» 2

6V, = 18
1 x3 y3 z3 (%)
1 x4 ya za

and coefficients a;, b;, c;, d;are solution of the system.

I X v oz a; 1
L x y oz | |b|_|1]
T oxe e z ci ! (19)
1 v wi =z a 1

According to the Galerkin' s method the projection
basis and approximation basis belong to one class of

function. As a result, we obtain the matrix equation.

M6—V+Adv @+Dif - p=F) (20)
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with coefficients

ﬁMa

0=2 9ull) En(x, y, 2)
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m
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The classical Galerkin’ method does not guarantee
the obtaining of solution free from numerical oscilla-
tion. The Petrov — Galerkin’ procedure lets to improve
this situation (Schachverdy,1993).

Initial and boundary conditions
Initial condition
We shall let that at initial time the flow was a rest.
The components of the velocities and turbulent

characteristics are equal zero
uix;, 0)=0.0, k(x;, 0)=0, &(x;, 0)=0 (26)
The dynamical part of pressure can be set a constant
Pp=Ppoy @7

The hydrostatic part of pressure can be found

according to formula

Pr=pg(lo—2) (28)
If we put that
6o = const 29)

Boundary condition

On solid walls, we set

uxi, =0 (30)
and
Ko, 1) = TP, E4xi, 1) = CH* K1 (31
JS oT
oo ¢2)

On free surface, the “rigged lid” boundary condition

is imposed

u3=0,p=pa (33)

And also kinemaric boundary conditions are as follows.

O0H OoH
w=0,0=0,w= u§—v—$,6=H

On outflow and inflow boundaries one of the
following types of boundary conditions are imposed.
(i) Cyclical boundary condition

u1|,4,,, ex = Uy sin ((Dt), u2|in, ex — u3|in. =0 (34)

(ii) Flather s boundary condition (Flather, 1976)

Uo
ul|in, ™ ulo(t)i > P [pD _PDo(t)L u2[in, ex = u3|in. a=0
0

(35)
(iii) Orlanski’ s boundary condition (Orlanski, 1976)

au] am

—_ 4
o Cox

B { dx | di==(duy | dr) | (duy ] dx) > 0
- 0 £ (duy / diy | (dur | dx)<0

= 0, u2|in, ex = u3|in, =0

(36)

Orlanski’ s boundary condition can be imposed for
salinity and temperature on inflow/outflow

boundaries.

Results and discussion

Internal waves derived by this numerical
calculation are shown in Fig. 3. Internal wave starts to
be generated centering the free surface near the edge
part of the shelf in Fig. 3(a). And after that, the
internal wave fluctuates with the period of half wave
length as shown in Fig. 3(b). As time elapsed, it
develops toward the deep sea with the formation of
wave increasing periods as shown in Fig.3 (¢) — (h).

Here, through the numerical calculation, it is seen
that the maximum value of the vertical wave
displacement is 40 — 70meters(wave amplitude: 20 —
35meters) during 2 — 32hours. It is in agreement with
the estimations of Small et al.(1999). They found that
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Fig. 3. Pattern of internal wave numerically calculated during 32 hours.

the wave amplitude must be at least 20meters, where
their calculations were based on the analysis of
SAR(Synthetic Aperture Radar) images and the
results from a weakly nonlinear theory of internal
waves. And for the phase speed of wave, using the
mean amplitude of 27.5meters, it is calculated as
about 0.9m/s.

And the result of numerical calculation on salinity

distribution around the shelf is shown in Fig.4(a) —
(b). As the flow patterns of salinity distribution at 12,
22 hours, show the same tendency as those of internal
wave in Fig. 3(c) and (f), it can be seen that internal
wave is generated in the close relationship with the
density. And the result of numerical calculation on
turbulent kinematic energy is shown in Fig.5(a) - (b).

It is shown that intensity of turbulence propagates
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calculated.
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Fig. 5. Pattern of turbulent kinematic energy distribution.

centering the edge part of the shelf. Thus it is thought
that the flow patterns of salinity distribution,
temperature distribution, etc. are affected by such

tendency of turbulent kinematic energy distribution.

Conclusion

The conclusions derived from the numerical
calculation of this study are summarized as follows.
The 3 — D modeling of ocean finite element method
using k — ¢ turbulent model and tetrahedron grids has
been set up to investigate the internal wave generation
during the expansion of the deep water from the open
sea to the shelf and then the numerical calculation of
internal wave has been tried. From the results of the
numerical calculation, internal wave was derived as
the wave length of 15,000 — 20,000m, the wave height
of 40 — 70m, the amplitude of 20 — 35m and the phase
velocity of 0.9m/s. And the flow pattern of internal
wave, salinity distribution and turbulence kinematic
energy distribution were also derived. These values
met the limit range suggested by Small et al.(1999)

and showed the reliable tendency.
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