• Title/Summary/Keyword: salicylic acid (SA)

Search Result 106, Processing Time 0.019 seconds

Improvement of Biocontrol of Damping-off and Root Rot/Wilt of Faba Bean by Salicylic Acid and Hydrogen Peroxide

  • Abdel-Monaim, Montaser Fawzy
    • Mycobiology
    • /
    • v.41 no.1
    • /
    • pp.47-55
    • /
    • 2013
  • Rhizoctonia solani, Fusarium solani, F. oxysporum, and Macrophomina phaseolina were found to be associated with root rott and wilt symptoms of faba bean plants collected from different fieldes in New Valley governorate, Egypt. All the obtained isolates were able to attack faba bean plants (cv. Giza 40) causing damping-off and root rot/wilt diseases. R. solani isolates 2 and 5, F. solani isolate 8, F. oxysporum isolate 12 and M. phaseolina isolate 14 were the more virulent ones in the pathogenicity tests. Biocontrol agents (Trichoderma viride and Bacillus megaterium) and chemical inducers (salicylic acid [SA] and hydrogen peroxide) individually or in combination were examined for biological control of damping-off and root rot/wilt and growth promoting of faba bean plants in vitro and in vivo. Both antagonistic biocontrol agents and chemical inducers either individually or in combination inhibited growth of the tested pathogenic fungi. Biocontrol agents combined with chemical inducers recorded the highest inhibited growth especially in case SA + T. viride and SA + B. megaterium. Under green house and field conditions, all treatments significantly reduced damping-off and root rot/wilt severity and increased of survival plants. Also, these treatments increased fresh and weights of the survival plants in pots compared with control. The combination between biocontrol agents and chemical inducers were more effective than used of them individually and SA + T. viride was the best treatment in this respect. Also, under field conditions, all these treatments significantly increased growth parameters (plant height and number of branches per plant) and yield components (number of pods per plant and number of seeds per plant, weight of 100 seeds and total yield per feddan) and protein content in both seasons (2010~2011 and 2011~2012). Faba bean seeds soaked in SA + T. viride and SA + B. megaterium were recorded the highest growth parameters and yield components. Generally, the combination between biocontrol agents and chemical inducers recorded the best results for controlling damping-off and root rot/wilt diseases in greenhouse and field with addition improved plant growth and increased yield components in field.

Effect of Salicylic Acid on Growth and Chilling Tolerance of Cucumber Seedlings

  • Lee, Gui-Soon;Hong, Jung-Hee
    • Journal of Environmental Science International
    • /
    • v.11 no.11
    • /
    • pp.1173-1181
    • /
    • 2002
  • The present study was undertaken to investigate the effect of low temperature and salicylic acid(SA) on the chilling tolerance of acclimated and nonacclimated cucumber(Cucurmis sativus L.) seedlings. The acclimation phenomenon was characterized in chilling-sensitive cucumber seedlings and found to have a significant effect on the survival and shoot dry weights. The injuries experienced by the acclimated seedlings in the third leaf stage were on average smaller by half than those experienced by the nonacclimated seedlings. Chilling also caused a large increase in the free proline levels, regardless of the acclimation status. Exogenous treatment with SA(0.5mM) resulted in improved growth and survival of the nonacclimated chilled seedlings, indicating that SA induced chilling tolerance and SA and acclimation had common effects. The application of cycloheximide in the presence of SA restored the acclimation-induced chilling tolerance. The elevated proline level observed in the cold-treated and SA-treated plants was more pronounced in the light than in the dark at a chilled temperature, indicating that endogenous proline may play a role in chilling tolerance by stabilizing the water status in response to chilling. From these results it is suggested that SA provided protection against low-temperature stress by increasing the proline accumulation, and pre-treatment with SA may induce antioxidant enzymes leading to increased chilling tolerance.

Systemic Acquired Resistance in Plants (전신획득저항성에 의한 식물병 방어기작)

  • Dawon, Jeon;Taekyung, Kim;Gah-Hyun, Lim
    • Journal of Life Science
    • /
    • v.32 no.11
    • /
    • pp.908-917
    • /
    • 2022
  • Systemic acquired resistance (SAR) is a form of systemic immunity that prevents secondary infections of distal uninfected parts of plants by related or unrelated pathogens. SAR is mediated by several SAR-inducing chemicals or mobile signals that accumulate after pathogen infection. Several chemicals that move systemically have already been identified as SAR-inducing factors, despite the fact that the early mobile signal remains unclear. These chemicals can be transported into either the apoplastic or symplastic compartments. Many of the chemicals associated with SAR remain unknown in terms of their transport routes. There is recent evidence that azelaic acid (AzA) and glycerol-3-phosphate (G3P) are transported via plasmodesmata (PD) channels, which regulate the symplastic route. In contrast, salicylic acid (SA) is preferentially transported from pathogen-infected to uninfected parts via the apoplast. The pH gradient and SA deprotonation lead to apoplastic accumulation of SA before it accumulates in the cytosol. Moreover, there is evidence that the mobility of SA over a long distance is crucial for SAR and that the partitioning of SA into the symplast and cuticles is controlled by transpiration. Further research has shown that a portion of the total SA in leaves is partitioned into cuticular waxes. The purpose of this review is to discuss the role of SAR-inducing chemicals and the regulation of transport in SAR.

Control of Basal Stem Rot Disease in Oil Palm by Supplementation of Calcium, Copper, and Salicylic Acid

  • Bivi, M. Shahul Hamid Rahamah;Paiko, Adamu Saidu;Khairulmazmi, Ahmad;Akhtar, M.S.;Idris, Abu Seman
    • The Plant Pathology Journal
    • /
    • v.32 no.5
    • /
    • pp.396-406
    • /
    • 2016
  • Continuous supplementation of mineral nutrients and salicylic acid (SA) as foliar application could improve efficacy in controlling basal stem rot (BSR) disease in oil palm seedling. It is revealed from the results that the highest disease severity index (58.3%) was recorded in T8 treatments at 9 months after inoculation. The best disease control was achieved by T7 treatments (calcium/copper/SA [Ca/Cu/SA]) (5.0%) followed by T1 (5.5%), T5 (5.8%), T3 (8.3%), T6 (8.3%), T4 (13.3%), and T2 (15.8%) treatments. Continuous supplementation of Ca/Cu/SA was found to be the most effective in controlling the disease and the high performance liquid chromatography results showed the detection of ergosterol at very low concentration in the treated samples. Moreover, the transmission electron microscopy analysis results clearly indicated that T7 treatment was also enhancing lignification, which was responsible for the thickness of the secondary cell walls and middle lamella compared to untreated samples. It was therefore, concluded that continuous supplementation of minerals nutrients and SA could effectively suppress disease severity by reducing ergosterol activity and also improve the process of lignification in the treated plants. Furthermore, this treatment also managed to delay the onset of BSR symptoms and promote the growth of the seedlings and eventually suppress the BSR disease.

Salicylic Acid Counteracts Aluminum Stress-induced Growth and Biomass Yield Reduction in Medicago sativa L.

  • Rahman, Md. Atikur;Lee, Sang-Hoon;Song, Yowook;Ji, Hee Jung;Kim, Ki-Yong;Choi, Gi Jun;Lee, Ki-Won
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.3
    • /
    • pp.153-157
    • /
    • 2019
  • Salicylic acid (SA) is an essential plant growth regulator that functions as a signaling molecule in plants. The purpose of this study was to clarify how the exogenous application of SA counteracts aluminum stress-induced growth and biomass yield reduction in alfalfa exposed to aluminum (Al) stress. Two-week-old alfalfa seedlings were exposed to a combination of $AlCl_3$ ($0{\mu}M$, $50{\mu}M$ and $100{\mu}M$, respectively) and SA (0.1 mM) for 72 hours. We observed, Al stress-induced plant growth inhibition and forage yield reduction are Al stress-dependent manner. A significant reduction of plant height (42.0-52.9%), leaf relative water content (13.0-21.4%), root length (35.4-48.7%), shoot fresh weight (31.2-25.9%), root fresh weight (15.4-23.3%), shoot dry weight (12.7-22.2%), roots dry weight (47.3-53.5%), were observed in alfalfa. In contrast, SA alleviated the Al-stress and enhanced growth and biomass yield in alfalfa. This study provides useful information concerning the role of SA that counteracts aluminum stress-induced growth and yield reduction in alfalfa.

Effect of salicylic acid and yeast extract on curcuminoids biosynthesis gene expression and curcumin accumulation in cells of Curcuma zedoaria

  • Lan, Truong Thi Phuong;Huy, Nguyen Duc;Luong, Nguyen Ngoc;Quang, Hoang Tan;Tan, Trinh Huu;Thu, Le Thi Anh;Huy, Nguyen Xuan;Loc, Nguyen Hoang
    • Journal of Plant Biotechnology
    • /
    • v.46 no.3
    • /
    • pp.172-179
    • /
    • 2019
  • The aim of this study is to evaluate the effect of yeast extract (YE) and salicylic acid (SA) on the expression of curcuminoid-biosynthesis genes (CzDCS and CURS1-3), and accumulation of curcumin in Curcuma zedoaria cell cultures. The results showed that, in cells treated with YE or SA, the expression levels of curcuminoid genes were 1.14- to 3.64-fold higher than the control (untreated cells), in which the YE exhibited a stronger effect in comparison with SA. Curcumin accumulation also tended to be similar to gene expression, curcumin contents in YE- or SA-treated cells were 1.61- to 2.53-fold higher than the control. The SA treatment at the fifth day of culture stimulated the curcumin accumulation and expression in all four genes compared to that at the beginning. While the YE treatments gave different results, the CzCURS1 and CzCURS3 genes were expressed strongly in cells that were treated at the beginning. However, the CzDCS and CzCURS2 genes showed the opposite expression pattern, they were activated strongly in the treatments at day five of the culture. However, the content of curcumin reached its maximum value on the fifth day of culture in all investigations.

TDDFT Potential Energy Functions for Excited State Intramolecular Proton Transfer of Salicylic Acid, 3-Aminosalicylic Acid, 5-Aminosalicylic Acid, and 5-Methoxysalicylic Acid

  • Jang, Sung-Woo;Jin, Sung-Il;Park, Chan-Ryang
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2343-2353
    • /
    • 2007
  • We report the application of time-dependent density functional theory (TDDFT) to the calculation of potential energy profile relevant to the excited state intramolecular proton transfer (ESIPT) processes in title molecules. The TDDFT single point energy calculations along the reaction path have been performed using the CIS optimized structure in the excited state. In addition to the Stokes shifts, the transition energies including absorption, fluorescence, and 0-0 transition are estimated from the TDDFT potential energy profiles along the proton transfer coordinate. The excited state TDDFT potential energy profile of SA and 3ASA resulted in very flat function of the OH distance in the range ROH = 1.0-1.6 A, in contrast to the relatively deep single minimum function in the ground state. Furthermore, we obtained very shallow double minima in the excited state potential energy profile of SA and 3ASA in contrast to the single minimum observed in the previous work. The change of potential energy profile along the reaction path induced by the substitution of electron donating groups (-NH2 and -OCH3) at different sites has been investigated. Substitution at para position with respect to the phenolic OH group showed strong suppression of excited state proton dislocation compared with unsubstitued SA, while substitution at ortho position hardly affected the shape of the ESIPT curve. The TDDFT results are discussed in comparison with those of CASPT2 method.

Effects of Salicylic Acid and Indole Acetic Acid Exogenous Applications on Induction of Faba Bean Resistance against Orobanche crenata

  • Briache, Fatima Zahra;Ennami, Mounia;Mbasani-Mansi, Joseph;Lozzi, Assia;Abousalim, Abdelhadi;El Rodeny, Walid;Amri, Moez;Triqui, Zine El Abidine;Mentag, Rachid
    • The Plant Pathology Journal
    • /
    • v.36 no.5
    • /
    • pp.476-490
    • /
    • 2020
  • The parasitic weed, Orobanche crenata, is one of the most devastating constraint for faba bean production in Mediterranean regions. Plant host defense induction was reported as one of the most appropriate control methods in many crops. The aim of this study was to elucidate the effect of salicylic acid (SA) and indole acetic acid (IAA) on the induction of faba bean resistance to O. crenata under the field and controlled experimental conditions. Both hormones were tested on two contrasting faba bean genotypes: Giza 843 (partially resistant to O. crenata) and Lobab (susceptible) at three different application methods (seed soaking, foliar spray, and the combination of both seed soaking and foliar spray). Soaking seeds in SA or IAA provided the highest protection levels reaching ~75% compared to the untreated control plants. Both elicitors limited the chlorophyll content decrease caused by O. crenata infestation and increased phenolic compound production in host plants. Phenylalanine ammonia lyase, peroxidase, and polyphenol oxidase activities were stimulated in the host plant roots especially in the susceptible genotype Lobab. The magnitude of induction was more obvious in infested than in non-infested plants. Histological study revealed that both SA and IAA decreased the number of attached O. crenata spikes which could be related to specific defense responses in the host plant roots.

DNA Damage Triggers the Activation of Immune Response to Viral Pathogens via Salicylic Acid in Plants

  • Hwi-Won Jeong;Tae Ho Ryu;Hyo-Jeong Lee;Kook-Hyung Kim;Rae-Dong Jeong
    • The Plant Pathology Journal
    • /
    • v.39 no.5
    • /
    • pp.449-465
    • /
    • 2023
  • Plants are challenged by various pathogens throughout their lives, such as bacteria, viruses, fungi, and insects; consequently, they have evolved several defense mechanisms. In addition, plants have developed localized and systematic immune responses due to biotic and abiotic stress exposure. Animals are known to activate DNA damage responses (DDRs) and DNA damage sensor immune signals in response to stress, and the process is well studied in animal systems. However, the links between stress perception and immune response through DDRs remain largely unknown in plants. To determine whether DDRs induce plant resistance to pathogens, Arabidopsis plants were treated with bleomycin, a DNA damage-inducing agent, and the replication levels of viral pathogens and growth of bacterial pathogens were determined. We observed that DDR-mediated resistance was specifically activated against viral pathogens, including turnip crinkle virus (TCV). DDR increased the expression level of pathogenesis-related (PR) genes and the total salicylic acid (SA) content and promoted mitogen-activated protein kinase signaling cascades, including the WRKY signaling pathway in Arabidopsis. Transcriptome analysis further revealed that defense-and SA-related genes were upregulated by DDR. The atm-2atr-2 double mutants were susceptible to TCV, indicating that the main DDR signaling pathway sensors play an important role in plant immune responses. In conclusion, DDRs activated basal immune responses to viral pathogens.

Swinging Effect of Salicylic Acid on the Accumulation of Polyhydroxyalkanoic Acid (PHA) in Pseudomonas aeruginosa BM114 Synthesizing Both MCL- and SCL-PHA

  • Rho, Jong-Kook;Choi, Mun-Hwan;Shim, Ji-Hoon;Lee, So-Young;Woo, Myeong-Ji;Ko, Bong-Sung;Chi, Ki-Whan;Yoon, Sung-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.12
    • /
    • pp.2018-2026
    • /
    • 2007
  • A bacterium, Pseudomonas aeruginosa BM114, capable of accumulating a blend of medium-chain-length (MCL)- and short-chain-length (SCL)-polyhydroxyalkanoic acid (PHA), was isolated. Salicylic acid (SA), without being metabolized, was found to specifically inhibit only the accumulation of MCL-PHA without affecting cell growth. An addition of 20 mM SA selectively inhibited the accumulation of MCL-PHA in decanoate-grown cells by 83% of the control content in one-step cultivation, where overall PHA accumulation was inhibited by only ${\sim}11%$. Typically, the molar monomer-unit ratio of the PHA for 25 mM decanoate-grown cells changed from 46:4:25:25 (=[3-hydroxybutyrate]:[3-hydroxycaproate]: [3-hydroxyoctanoate]:[3-hydroxydecanoate]) at 0 mM SA (dry cell wt, 1.97 g/l; PHA content, 48.6 wt%) to 91:1:4:4 at 20 mM SA (dry cell wt, 1.85 g/l; PHA content, 43.2 wt%). Thus, the stimulation of SCL-PHA accumulation was observed. Growth of P. aeruginosa BM114 on undecanoic acid also produced a PHA blend composed of 47.4% P(3HB-co-3-hydroxyvalerate) and 52.6% P(3-hydroxyheptanoate-co-3-hydroxynonanoate-co-3-hydroxyundecanoate). Similar to the case of even-carboxylic acids, SA inhibited the accumulation of only MCL-PHA, but stimulated the accumulation of SCL-PHA. For all medium-chain fatty acids tested, SA induced a stimulation of SCL-PHA accumulation in the BM114 strain. SA could thus be used to suppress only the formation of MCL-PHA in Pseudomonas spp. accumulating a blend of SCL-PHA and MCL-PHA.