Browse > Article

Swinging Effect of Salicylic Acid on the Accumulation of Polyhydroxyalkanoic Acid (PHA) in Pseudomonas aeruginosa BM114 Synthesizing Both MCL- and SCL-PHA  

Rho, Jong-Kook (Division of Applied Life Sciences (BK21), Graduate School, Gyeongsang National University)
Choi, Mun-Hwan (Division of Applied Life Sciences (BK21), Graduate School, Gyeongsang National University)
Shim, Ji-Hoon (Division of Applied Life Sciences (BK21), Graduate School, Gyeongsang National University)
Lee, So-Young (Nano-Biomaterials Science Laboratory, Graduate School, Gyeongsang National University)
Woo, Myeong-Ji (Division of Applied Life Sciences (BK21), Graduate School, Gyeongsang National University)
Ko, Bong-Sung (Department of Chemistry, University of Ulsan)
Chi, Ki-Whan (Department of Chemistry, University of Ulsan)
Yoon, Sung-Chul (Division of Applied Life Sciences (BK21), Graduate School, Gyeongsang National University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.12, 2007 , pp. 2018-2026 More about this Journal
Abstract
A bacterium, Pseudomonas aeruginosa BM114, capable of accumulating a blend of medium-chain-length (MCL)- and short-chain-length (SCL)-polyhydroxyalkanoic acid (PHA), was isolated. Salicylic acid (SA), without being metabolized, was found to specifically inhibit only the accumulation of MCL-PHA without affecting cell growth. An addition of 20 mM SA selectively inhibited the accumulation of MCL-PHA in decanoate-grown cells by 83% of the control content in one-step cultivation, where overall PHA accumulation was inhibited by only ${\sim}11%$. Typically, the molar monomer-unit ratio of the PHA for 25 mM decanoate-grown cells changed from 46:4:25:25 (=[3-hydroxybutyrate]:[3-hydroxycaproate]: [3-hydroxyoctanoate]:[3-hydroxydecanoate]) at 0 mM SA (dry cell wt, 1.97 g/l; PHA content, 48.6 wt%) to 91:1:4:4 at 20 mM SA (dry cell wt, 1.85 g/l; PHA content, 43.2 wt%). Thus, the stimulation of SCL-PHA accumulation was observed. Growth of P. aeruginosa BM114 on undecanoic acid also produced a PHA blend composed of 47.4% P(3HB-co-3-hydroxyvalerate) and 52.6% P(3-hydroxyheptanoate-co-3-hydroxynonanoate-co-3-hydroxyundecanoate). Similar to the case of even-carboxylic acids, SA inhibited the accumulation of only MCL-PHA, but stimulated the accumulation of SCL-PHA. For all medium-chain fatty acids tested, SA induced a stimulation of SCL-PHA accumulation in the BM114 strain. SA could thus be used to suppress only the formation of MCL-PHA in Pseudomonas spp. accumulating a blend of SCL-PHA and MCL-PHA.
Keywords
Polyhydroxyalkanoic acid; PHA accumulation inhibitor; salicylic acid; SCL-PHA accumulation stimulator;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
Times Cited By Web Of Science : 5  (Related Records In Web of Science)
연도 인용수 순위
1 Choi, M. H., H.-J. Lee, J. K. Rho, S. C. Yoon, J. D. Nam, D. Lim, and R. W. Lenz. 2003. Biosynthesis and local sequence specific degradation of poly(3-hydroxyvalerateco- 4-hydroxybutyrate) in Hydrogenophaga pseudoflava. Biomacromolecules 4: 38-45   DOI   ScienceOn
2 Choi, M. H. and S. C. Yoon. 1994. Polyester biosynthesis characteristics of Pseudomonas citronellolis grown on various carbon sources, including 3-methyl-branched substrates. Appl. Environ. Microbiol. 60: 3245-3254
3 Fiedler, S., A. Steinbüchel, and B. H. A. Rehm. 2000. PhaGmediated synthesis of poly(3-hydroxyalkanoates) consisting of medium-chain-length constituents from nonrelated carbon sources in recombinant Pseudomonas fragi. Appl. Environ. Microbiol. 66: 2117-2124   DOI   ScienceOn
4 Green, P. R., J. Kemper, L. Schechtman, L. Guo, M. Satkowski, S. Fiedler, A. Steinbüchel, and B. H. A. Rehm. 2002. Formation of short chain length/medium chain length polyhydroxyalkanoate copolymers by fatty acid ${\beta}$-oxidation inhibited Ralstonia eutropha. Biomacromolecules 3: 208- 213   DOI
5 Krieg, N. R. and J. G. Holt. 1984. Gram-negative aerobic rods and cocci, p. 140. In R. G. G. Murray and D. J. Brenner (eds.), Bergey's Manual of Systematic Bacteriology, Vol. 1. The Williams & Wilkins Co., Baltimore
6 Madison, L. L. and G. W. Huisman. 1999. Metabolic engineering of poly(3-hydroxyalkanoates): From DNA to plastic. Microbiol. Mol. Biol. Rev. 63: 21-53
7 Matsusaki, H., S. Manji, K. Taguchi, M. Kato, T. Fukui, and Y. Doi. 1998. Cloning and molecular analysis of the poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3- hydroxyalkanoate) biosynthesis genes in Pseudomonas sp. strain 61-3. J. Bacteriol. 180: 6459-6467
8 Park, S. J., J. I. Choi, and S. Y. Lee. 2005. Short-chain-length polyhydroxyalkanoates: Synthesis in metabolically engineered Escherichia coli and medical applications. J. Microbiol. Biotechnol. 15: 206-215   과학기술학회마을
9 Qi, Q., A. Steinbüchel, and B. H. A. Rehm. 1998. Metabolic routing towards polyhydroxyalkanoic acid synthesis in recombinant Escherichia coli (fadR): Inhibition of fatty acid ${\beta}$-oxidation by acrylic acid. FEMS Microbiol. Lett. 167: 89- 94
10 Ward, P. G. and K. E. O'Connor. 2005. Bacterial synthesis of polyhydroxalkanoates containing aromatic and aliphatic monomers by Pseudomonas putida CA-3. Int. J. Biol. Macromol. 35: 127-133   DOI
11 Lee, H.-J., M. H. Choi, T.-U. Kim, and S. C. Yoon. 2001. Accumulation of polyhydroxyalkanoic acid containing large amounts of unsaturated monomers in Pseudomonas fluorescens BM07 utilizing saccharides and its inhibition by 2- bromooctanoic acid. Appl. Environ. Microbiol. 67: 4963- 4974   DOI   ScienceOn
12 Steinbuchel, A. and S. Wiese. 1992. A Pseudomonas strain accumulating polyesters of 3-hydroxybutyric acid and mediumchain- length 3-hydroxyalkanoic acids. Appl. Microbiol. Biotechnol. 37: 691-697
13 Abe, H., Y. Doi, T. Fukushima, and H. Eya. 1994. Biosynthesis from gluconate of a random copolyester consisting of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates by Pseudomonas sp. 61-3. Int. J. Biol. Macromol. 16: 115-119
14 Yoon, S. C. and M. H. Choi. 1999. Local sequence dependence of polyhydroxyalkanoic acid degradation in Hydrogenophaga pseudoflava. J. Biol. Chem. 274: 37800- 37808   DOI   ScienceOn
15 Kato, M., H. J. Bao, C.-K. Kang, T. Fukui, and Y. Doi. 1996. Production of a novel copolyester of 3-hydroxybutyric acid and medium-chain-length 3-hydroxyalkanoic acids by Pseudomonas sp. 61-3 from sugars. Appl. Microbiol. Biotechnol. 45: 363-370
16 Anderson, A. J. and E. A. Dawes. 1990. Occurrence, metabolism, metabolic role and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev. 54: 450-472
17 Kamiya, N., Y. Yamamoto, Y. Inoue, R. Chujo, and Y. Doi. 1989. Microstructure of bacterially synthesized poly(3- hydroxybutyrate-co-3-hydroxyvalerate). Macromolecules 22: 1676-1682   DOI   ScienceOn
18 Oh, J. S., M. H. Choi, and S. C. Yoon. 2005. In vivo 13CNMR spectroscopic study of polyhydroxyalkanoic acid degradation kinetics in bacteria. J. Microbiol. Biotechnol. 15: 1330-1336   과학기술학회마을
19 Lee, D. S., M. W. Lee, S. H. Woo, and J. M. Park. 2005. Effects of salicylate and glucose on biodegradation of phenanthrene by Burkholderia cepacia PM07. J. Microbiol. Biotechnol. 15: 859-865   과학기술학회마을
20 Price, C. D. T., I. R. Lee, and J. E. Gustafson. 2000. The effects of salicylate on bacteria. Int. J. Biochem. Cell Biol. 32: 1029-1043   DOI   ScienceOn
21 Ward, P. G., G. de Roo, and K. E. O'Connor. 2005. Accumulation of polyhydroxyalkanoate from styrene and phenylacetic acid by Pseudomonas putida CA-3. Appl. Environ. Microbiol. 71: 2046-2052   DOI   ScienceOn
22 Matsumoto, K., H. Matsusaki, K. Taguchi, M. Seki, and Y. Doi. 2001. Cloning and characterization of the Pseudomonas sp. 61-3 phaG gene involved in polyhydroxyalkanoate biosynthesis. Biomacromolecules 2: 142-147
23 Rehm, B. H. A., N. Kröger, and A. Steinbüchel. 1998. A new metabolic link between fatty acid synthesis and polyhydroxyalkanoic acid synthesis. J. Biol. Chem. 273: 24044-24051   DOI   ScienceOn
24 Han, M.-J., S. J. Park, J. W. Lee, B.-H. Min, S. Y. Lee, S.-J. Kim, and J. S. Yoo. 2006. Analysis of poly(3-hydroxybutyrate) granule-associated proteome in recombinant Escherichia coli. J. Microbiol. Biotechnol. 16: 901-910   과학기술학회마을
25 Matsumoto, K., H. Matsusaki, K. Taguchi, M. Seki, and Y. Doi. 2002. Isolation and characterization of polyhydroxyalkanoates inclusions and their associated proteins in Pseudomonas sp. 61-3. Biomacromolecules 3: 787-792
26 Hinz, B., V. Kraus, A. Pahl, and K. Brune. 2000. Salicylate metabolites inhibit cyclooxygenase-2-dependent prostaglandin E2 synthesis in murine macrophages. Biochem. Biophys. Res. Commun. 274: 197-202   DOI   ScienceOn
27 Hoffmann, N., A. Steinbüchel, and B. H. A. Rehm. 2000. Homologous functional expression of cryptic phaG from Pseudomonas oleovorans establishes the transacylasemediated polyhydroxyalkanoate biosynthetic pathway. Appl. Microbiol. Biotechnol. 54: 665-670   DOI   ScienceOn
28 Kim, T.-W., M. T. Vo, H.-D. Shin, and Y.-H. Lee. 2005. Molecular structure of the PHA synthesis gene cluster from new mcl-PHA producer Pseudomonas putida KCTC1639. J. Microbiol. Biotechnol. 15: 1120-1124   과학기술학회마을
29 Lee, H.-J., J. K. Rho, K. A. Noghabi, S. E. Lee, M. H. Choi, and S. C. Yoon. 2004. Channeling of intermediates derived from medium-chain fatty acids and de novo-synthesized fatty acids to polyhydroxyalkanoic acid by 2-bromooctanoic acid in Pseudomonas fluorescens BM07. J. Microbiol. Biotechnol. 14: 1256-1266