DOI QR코드

DOI QR Code

TDDFT Potential Energy Functions for Excited State Intramolecular Proton Transfer of Salicylic Acid, 3-Aminosalicylic Acid, 5-Aminosalicylic Acid, and 5-Methoxysalicylic Acid

  • Published : 2007.12.20

Abstract

We report the application of time-dependent density functional theory (TDDFT) to the calculation of potential energy profile relevant to the excited state intramolecular proton transfer (ESIPT) processes in title molecules. The TDDFT single point energy calculations along the reaction path have been performed using the CIS optimized structure in the excited state. In addition to the Stokes shifts, the transition energies including absorption, fluorescence, and 0-0 transition are estimated from the TDDFT potential energy profiles along the proton transfer coordinate. The excited state TDDFT potential energy profile of SA and 3ASA resulted in very flat function of the OH distance in the range ROH = 1.0-1.6 A, in contrast to the relatively deep single minimum function in the ground state. Furthermore, we obtained very shallow double minima in the excited state potential energy profile of SA and 3ASA in contrast to the single minimum observed in the previous work. The change of potential energy profile along the reaction path induced by the substitution of electron donating groups (-NH2 and -OCH3) at different sites has been investigated. Substitution at para position with respect to the phenolic OH group showed strong suppression of excited state proton dislocation compared with unsubstitued SA, while substitution at ortho position hardly affected the shape of the ESIPT curve. The TDDFT results are discussed in comparison with those of CASPT2 method.

Keywords

References

  1. Weller, A. Prog. React. Kinet. 1961, 1, 188
  2. Weller, A. A. Naturwissenchaften 1995, 42, 175
  3. Weller, A. Z. Electrochem. 1956, 60, 1144
  4. Goodman, J.; Brus, L. E. J. Am. Chem. Soc. 1978, 100, 7472 https://doi.org/10.1021/ja00492a005
  5. Heimbrook, L.; Kenny, J. E.; Kohler, B. E.; Scott, G. W. J. Phys. Chem. 1983, 87, 280 https://doi.org/10.1021/j100225a022
  6. Yahagi, T.; Fujii, A.; Ebata, T.; Mikami, N. J. Phys. Chem. A 2001, 105, 10673 https://doi.org/10.1021/jp0126199
  7. Herek, J. L.; Pedersen, S.; Banares, L.; Zewail, A. H. J. Chem. Phys. 1992, 97, 9046 https://doi.org/10.1063/1.463331
  8. Lahmani, F.; Zeknacker-Rentien, A. J. Phys. Chem. A 1997, 101, 6141
  9. Bisht, P. B.; Petek, H.; Yoshihara, K.; Nagashima, U. J. Chem. Phys. 1995, 103, 5290 https://doi.org/10.1063/1.470565
  10. Heimbrook, L. A.; Kenny, J. E.; Kohler, B. E.; Scott, G. W. J. Chem. Phys. 1981, 75, 5201 https://doi.org/10.1063/1.441873
  11. Abou El-Nasr, E. A.; Fujii, A.; Ebata, T.; Mikami, N. Chem. Phys. Lett. 2003, 376, 788 https://doi.org/10.1016/S0009-2614(03)01041-8
  12. Abou El-Nasr, E. A.; Fujii, A.; Yahagi, T.; Ebata, T.; Mikami, N. J. Phys. Chem. A 2005, 109, 2498 https://doi.org/10.1021/jp046381a
  13. Wang, D. P.; Chen, S. G.; Chen, D. Z. J. Photochem. Photobiol. A: Chem. 2004, 162, 407 https://doi.org/10.1016/S1010-6030(03)00382-4
  14. Banerjee, D.; Mukhopadhyay, M.; Mukherjee, S. J. Photochem. Photobiol. A: Chem. 2005, 172, 250 https://doi.org/10.1016/j.jphotochem.2004.12.012
  15. Liang, Y. H.; Yi, P. G.; Cao, C. Z. J. Mol. Struc: THEOCHEM 2005, 729, 163 https://doi.org/10.1016/j.theochem.2005.02.090
  16. Ahn, D. S.; Lee, S.; Kim, B. Chem. Phys. Lett. 2004, 390, 384 https://doi.org/10.1016/j.cplett.2004.03.152
  17. Catalan, J.; Fernandez-Alonso, J. I. J. Mol. Struc. 1975, 27, 59 https://doi.org/10.1016/0022-2860(75)85123-4
  18. Orttung, W. H.; Scott, G. W.; Vossoghi, D. J. Mol. Struct. 1984, 109, 161 https://doi.org/10.1016/0166-1280(84)80001-9
  19. Sobolewski, A. L.; Domcke, W. Chem. Phys. 1998, 232, 257 https://doi.org/10.1016/S0301-0104(98)00110-4
  20. Sobolewski, A. L.; Domcke, W. Phys. Chem. Chem. Phys. 1999, 1, 3065 https://doi.org/10.1039/a902565k
  21. Vener, M. V.; Scheiner, S. J. Phys. Chem. 1995, 99, 642 https://doi.org/10.1021/j100002a031
  22. Zhang, W.; Shi, B.; Shi, J. J. Mol. Struc: THEOCHEM 2005, 731, 219 https://doi.org/10.1016/j.theochem.2005.05.032
  23. Casadesus, R.; Moreno, M.; Lluch, J. M. Chem. Phys. 2003, 290, 319 https://doi.org/10.1016/S0301-0104(03)00173-3
  24. Gong, Z.; Lagowski, J. B. J. Mol. Struc: THEOCHEM 2005, 729, 211 https://doi.org/10.1016/j.theochem.2005.06.009
  25. Nosenko, Y.; Stepanenko, Y.; Wu, F.; Thummel, R. P.; Mordzinski, A. Chem. Phys. Lett. 1999, 315, 87 https://doi.org/10.1016/S0009-2614(99)01196-3
  26. Liu, F.; Zuo, P.; Meng, L.; Zheng, S. J. J. Mol. Struc.: THEOCHEM. 2005, 726, 161 https://doi.org/10.1016/j.theochem.2004.12.033
  27. Casadesus, R.; Vendrell, O.; Moreno, M.; Lluch, J. M. Chem.Phys. Lett. 2005, 405, 187 https://doi.org/10.1016/j.cplett.2005.02.025
  28. Yi, P. G.; Liang, Y. H. Chem. Phys. 2006, 322, 382 https://doi.org/10.1016/j.chemphys.2005.09.019
  29. Sobolewski, A. L.; Domcke, W. J. Phys. Chem. A 2004, 108, 10917 https://doi.org/10.1021/jp046428s
  30. Shukla, M. K.; Leszczynski, J. Int. J. Quan. Chem. 2005, 105, 387 https://doi.org/10.1002/qua.20714
  31. Abou El-Nasr, E. A.; Fujii, A.; Ebata, T.; Mikami, N. Mol. Phys. 2005, 103, 1561 https://doi.org/10.1080/00268970500123543
  32. Peng, C.; Ayala, P. Y.; Schlegel, H. B.; Frisch, M. J. J. Comp. Chem. 1996, 17, 49 https://doi.org/10.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.0.CO;2-0
  33. Peng, C.; Schlegel, H. B. Israel J. Chem. 1993, 33, 449 https://doi.org/10.1002/ijch.199300051
  34. Pant, D. D.; Joshi, H. C.; Bisht, P. B.; Tripathi, H. B. Chem. Phys. 1994, 185, 137 https://doi.org/10.1016/0301-0104(94)00090-5
  35. Bisht, P. B.; Petek, H.; Yoshihara, K.; Nagashima, U. J. Chem. Phys. 1995, 103, 5290 https://doi.org/10.1063/1.470565
  36. Smoluch, M.; Joshi, H.; Gerssen, A.; Gooijer, C.; van der Zwan, G. J. Phys. Chem. A 2003, 109, 535 https://doi.org/10.1021/jp0475281
  37. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision B.05; Gaussian, Inc.: Wallingford, CT, 2003

Cited by

  1. Photochemical and Thermal Stability of Some Dihydroxyacetophenones Used as UV-MALDI-MS Matrices vol.89, pp.6, 2013, https://doi.org/10.1111/php.12130
  2. An Assessment of RASSCF and TDDFT Energies and Gradients on an Organic Donor–Acceptor Dye Assisted by Resonance Raman Spectroscopy vol.9, pp.1, 2013, https://doi.org/10.1021/ct3009057
  3. Ultrafast Intramolecular Electron and Proton Transfer in Bis(imino)isoindole Derivatives vol.119, pp.22, 2015, https://doi.org/10.1021/acs.jpca.5b02889
  4. ]coumarin vol.119, pp.34, 2015, https://doi.org/10.1021/acs.jpca.5b04874
  5. Effective targeting of proton transfer at ground and excited states of ortho-(2′-imidazolyl)naphthol constitutional isomers vol.17, pp.4, 2015, https://doi.org/10.1039/C4CP04337E
  6. Full-Dimensional Excited-State Intramolecular Proton Transfer Dynamics of Salicylic Acid vol.121, pp.32, 2017, https://doi.org/10.1021/acs.jpca.7b03261
  7. States vol.9, pp.17, 2008, https://doi.org/10.1002/cphc.200800499
  8. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  9. Electronic Properties and Conformation Analysis of Phytochromobilins, Chromophore in Phytochrome vol.29, pp.9, 2007, https://doi.org/10.5012/bkcs.2008.29.9.1678
  10. Theoretical and experimental study of the vertical excitation energies in the ionic and tautomeric forms of 4-aminomethylpyridine vol.209, pp.1, 2010, https://doi.org/10.1016/j.jphotochem.2009.10.003
  11. Excited-State Intramolecular Proton Transfer: A Short Introductory Review vol.26, pp.5, 2007, https://doi.org/10.3390/molecules26051475