Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.03.2020.0056

Effects of Salicylic Acid and Indole Acetic Acid Exogenous Applications on Induction of Faba Bean Resistance against Orobanche crenata  

Briache, Fatima Zahra (Biotechnology Unit, CRRA-Rabat, National Institute of Agricultural Research (INRA))
Ennami, Mounia (Biotechnology Unit, CRRA-Rabat, National Institute of Agricultural Research (INRA))
Mbasani-Mansi, Joseph (Biotechnology Unit, CRRA-Rabat, National Institute of Agricultural Research (INRA))
Lozzi, Assia (Department of Crop Production, Protection and Biotechnology, Institute of Agronomy and Veterinary Medicine Hassan)
Abousalim, Abdelhadi (Department of Crop Production, Protection and Biotechnology, Institute of Agronomy and Veterinary Medicine Hassan)
El Rodeny, Walid (Sakha Agricultural Research Station, Agricultural Research Center (ARC))
Amri, Moez (Agro-sciences (AgBS), University Mohammed VI Polytechnic (UM6P))
Triqui, Zine El Abidine (Department of Biotechnology and Plant Physiology, Faculty of Sciences, Mohammed V University)
Mentag, Rachid (Biotechnology Unit, CRRA-Rabat, National Institute of Agricultural Research (INRA))
Publication Information
The Plant Pathology Journal / v.36, no.5, 2020 , pp. 476-490 More about this Journal
Abstract
The parasitic weed, Orobanche crenata, is one of the most devastating constraint for faba bean production in Mediterranean regions. Plant host defense induction was reported as one of the most appropriate control methods in many crops. The aim of this study was to elucidate the effect of salicylic acid (SA) and indole acetic acid (IAA) on the induction of faba bean resistance to O. crenata under the field and controlled experimental conditions. Both hormones were tested on two contrasting faba bean genotypes: Giza 843 (partially resistant to O. crenata) and Lobab (susceptible) at three different application methods (seed soaking, foliar spray, and the combination of both seed soaking and foliar spray). Soaking seeds in SA or IAA provided the highest protection levels reaching ~75% compared to the untreated control plants. Both elicitors limited the chlorophyll content decrease caused by O. crenata infestation and increased phenolic compound production in host plants. Phenylalanine ammonia lyase, peroxidase, and polyphenol oxidase activities were stimulated in the host plant roots especially in the susceptible genotype Lobab. The magnitude of induction was more obvious in infested than in non-infested plants. Histological study revealed that both SA and IAA decreased the number of attached O. crenata spikes which could be related to specific defense responses in the host plant roots.
Keywords
faba bean; indole acetic acid; induction of resistance; Orobanche crenata; salicylic acid;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Perez-de-Luque, A., Gonzalez-Verdejo, C. I., Lozano, M. D., Dita, M. A., Cubero, J. I., Gonzalez-Melendi, P., Risueno, M. C. and Rubiales, D. 2006. Protein cross-linking, peroxidase and ${\beta}$-1,3-endoglucanase involved in resistance of pea against Orobanche crenata. J. Exp. Bot. 57:1461-1469.   DOI
2 Abbes, Z., Kharrat, M., Delavault, P., Chaibi, W. and Simier, P. 2009. Nitrogen and carbon relationships between the parasitic weed Orobanche foetida and susceptible and tolerant faba bean lines. Plant Physiol. Biochem. 47:153-159.   DOI
3 Abbes, Z., Kharrat, M., Delavault, P., Simier, P. and Chaibi, W. 2007. Field evaluation of the resistance of some faba bean (Vicia faba L.) genotypes to the parasitic weed Orobanche foetida Poiret. Crop Prot. 26:1777-1784.   DOI
4 Abbes, Z., Mkadmi, M., Trabelsi, I., Amri, M. and Kharrat, M. 2014. Orobanche foetida control in faba bean by foliar application of benzothiadiazole (BTH) and salicylic acid. Bulg. J. Agric. Sci. 20:1439-1443.
5 Abd El-Aty, M. S. M., El-Galaly, O. A. M. and Soliman, A. A. M. 2016. Heterosis and combining ability for yield, yield components and inheritance of tolerance to Orobanche in Faba bean. Egypt. J. Plant Breed. 20:397-412.   DOI
6 Abu-Irmaileh, B. E. and Labrada, R. 2014. The problem of Orobanche spp. in Africa and Near East Online: Food and Agriculture Organization of the United Nations (FAO) (2014). URL: http://www.fao.org/agriculture/crops/thematic-sitemap/theme/biodiversity/weeds/issues/oro/en/ [1 June 2014].
7 Achuo, E. A., Audenaert, K., Meziane, H. and Hofte, M. 2004. The salicylic acid-dependent defence pathway is effective against different pathogens in tomato and tobacco. Plant Pathol. 53:65-72.   DOI
8 Al-Wakeel, S. A. M., Moubasher, H., Gabr, M. M. A. and Madany, M. M. Y. 2012. Induction of systemic resistance in tomato plants against Orobanche ramosa L. using hormonal inducers. Egypt. J. Bot. 52:403-416.
9 Al-Wakeel, S. A. M., Moubasher, H., Gabr, M. M. and Madany, M. M. Y. 2013. Induced systemic resistance: an innovative control method to manage branched broomrape (Orobanche ramosa L.) in tomato. IUFS J. Biol. 72:9-21.
10 Perez-de-Luque, A., Jorrin, J. V. and Rubiales, D. 2004. Crenate broomrape control in pea by foliar application of benzothiadiazole (BTH). Phytoparasitica 32:21.   DOI
11 Perez-de-Luque, A., Rubiales, D., Cubero, J. I., Press, M. C., Scholes, J., Yoneyama, K., Takeuchi, Y., Plakhine, D. and Joel, D. M. 2005. Interaction between Orobanche crenata and its host legumes: unsuccessful haustorial penetration and necrosis of the developing parasite. Ann. Bot. 95:935-942.   DOI
12 Perez, L., Rodriguez, M. E., Rodriguez, F. and Roson, C. 2003. Efficacy of acibenzolar-S-methyl, an inducer of systemic acquired resistance against tobacco blue mould caused by Peronospora hyoscyami f. sp. tabacina. Crop Prot. 22:405-413.   DOI
13 Polle, A., Otter, T. and Seifert, F. 1994. Apoplastic peroxidases and lignification in needles of Norway spruce (Picea abies L.). Plant Physiol. 106:53-60.   DOI
14 Pradeep, T. and Jambhale, N. D. 2012. Relationship between phenolics, polyphenol oxidase and peroxidases and resistance to powdery mildew in Zizhyphus. Indian Phytopathol. 55:195-196.
15 Echevarria-Zomeno, S., Perez-de-Luque, A., Jorrin, J. and Maldonado, A. M. 2006. Pre-haustorial resistance to broomrape (Orobanche cumana) in sunflower (Helianthus annuus): cytochemical studies. J. Exp. Bot. 57:4189-4200.   DOI
16 Chrzanowski, G., Ciepiela, A. P., Sprawka, I., Sempruch, C., Sytykiewicz, H. and Czerniewicz, P. 2003. Activity of polyphenoloxidase in the ears of spring wheat and triticale infested by grain aphid (Sitobion avenae [F.]). Electron. J. Pol. Agric. Univ. 6:1-5.
17 Clarke, J. D., Volko, S. M., Ledford, H., Ausubel, F. M. and Dong, X. 2000. Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in Arabidopsis. Plant Cell 12:2175-2190.   DOI
18 Durrant, W. E. and Dong, X. 2004. Systemic acquired resistance. Annu. Rev. Phytopathol. 42:185-209.   DOI
19 Ennami, M., Briache, F. Z., Mansi, J. M., Gaboun, F., Ghaouti, L., Belqadi, L. and Mentag, R. 2017. Genetic diversity of Moroccan Orobanche crenata populations revealed by sequencerelated amplified polymorphism markers. J. Agric. Sci. 9:164-175.
20 Ennami, M., Mbasani-mansi, J., Briache, F. Z., Oussible, N., Gaboun, F., Ghaouti, L., Belqadi, L., Ghanem, M. E., Aberkani, K., Westwood, J. and Mentag, R. 2020. Growth-defense tradeoffs and source-sink relationship during both faba bean and lentil interactions with Orobanche crenata Forsk. Crop Prot. 127:104924.   DOI
21 Bar-Nun, N., Sachs, T. and Mayer, A. M. 2007. A role for IAA in the infection of Arabidopsis thaliana by Orobanche aegyptiaca. Ann. Bot. 101:261-265.   DOI
22 Raasch-Fernandes, L. D., Bonaldo, S. M., de Jesus Rodrigues, D., Vieira-Junior, G. M., Schwan-Estrada, K. R. F., da Silva, C. R., Vercosa, A. G. A., de Oliveira, D. L. and Debiasi, B. W. 2019. Induction of phytoalexins and proteins related to pathogenesis in plants treated with extracts of cutaneous secretions of southern Amazonian Bufonidae amphibians. PLoS ONE 14:e0211020.   DOI
23 Ragab, M. M. M., Saber, M. M., El-Morsy, S. A. and El-Aziz, A. R. M. A. 2009. Induction of systemic resistance against root rot of basil using some chemical inducers. Egypt. J. Phytopathol. 37:59-70.
24 Ramakrishna, R., Sarkar, D. and Shetty, K. 2019. Metabolic stimulation of phenolic biosynthesis and antioxidant enzyme response in dark germinated barley (Hordeum vulgare L.) sprouts using bioprocessed elicitors. Food Sci. Biotechnol. 28:1093-1106.   DOI
25 Fadeel, A. A. 1962. Location and properties of chloroplasts and pigment determination in roots. Physiol. Plant. 15:130-146.   DOI
26 Fernandez-Aparicio, M., Reboud, X. and Gibot-Leclerc, S. 2016. Broomrape weeds. Underground mechanisms of parasitism and associated strategies for their control: a review. Front. Plant Sci. 7:135.
27 Amri, M., Abbes, Z., Trabelsi, I. and Kharrat, M. 2019. Release of a new faba bean variety "Chourouk" resistant to the parasitic plants Orobanche foetida and O. crenata in Tunisia. Int. J. Agric. Biol. 23:499-505.
28 Banerjee, A., Das, A. B. and Mittra, B. 2016. Aluminium pretreatment induces activation of defense responses against Fusarium infection in Triticum aestivum. Russ. J. Plant Physiol. 63:483-489.   DOI
29 Benhamou, N., Gagn, S., Le Quer, D. and Dehbi, L. 2000. Bacterial-mediated induced resistance in cucumber: beneficial effect of the endophytic bacterium Serratia plymuthica on the protection against infection by Pythium ultimum. Phytopathology 90:45-56.   DOI
30 Bigirimana, J. and Hofte, M. 2002. Induction of systemic resistance to Colletotrichum lindemuthianum in bean by a benzothiadiazole derivative and rhizobacteria. Phytoparasitica 30:159-168.   DOI
31 Briache, F. Z., Ennami, M., Mbasani-Mansi, J., Gaboun, F., Abdelwahd, R., Fatemi, Z. E. A., El-Rodeny, W., Amri, M., Triqui, Z. E. A. and Mentag, R. 2019. Field and controlled conditions screenings of some faba bean (Vicia faba L.) genotypes for resistance to the parasitic plant Orobanche crenata Forsk. and investigation of involved resistance mechanisms. J. Plant Dis. Prot. 126:211-224.   DOI
32 Burdziej, A., Da Costa, G., Gougeon, L., Le Mao, I., Bellee, A., Corio-Costet, M.-F., Merillon, J.-M., Richard, T., Szakiel, A. and Cluzet, S. 2019. Impact of different elicitors on grapevine leaf metabolism monitored by 1H NMR spectroscopy. Metabolomics 15:67.   DOI
33 Rubiales, D. and Fernandez-Aparicio, M. 2012. Innovations in parasitic weeds management in legume crops: a review. Agron. Sustain. Dev. 32:433-449.   DOI
34 Reddy, A. R., Chaitanya, K. V., Jutur, P. P. and Sumithra, K. 2004. Differential antioxidative responses to water stress among five mulberry (Morus alba L.) cultivars. Environ. Exp. Bot. 52:33-42.   DOI
35 Rispail, N., Dita, M.-A., Gonzalez-Verdejo, C., Perez-de-Luque, A., Castillejo, M.-A., Prats, E., Roman, B., Jorrin, J. and Rubiales, D. 2007. Plant resistance to parasitic plants: molecular approaches to an old foe. New Phytol. 173:703-712.   DOI
36 Rubiales, D. 2018. Can we breed for durable resistance to broomrapes? Phytopathol. Mediterr. 57:170-185.
37 Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H.-Y. and Hunt, M. D. 1996. Systemic acquired resistance. Plant Cell 8:1809-1819.   DOI
38 Sestak, Z. 1971. Determination of chlorophyll a and b. In: Plant photosynthetic production: manual of methods, eds. by Z. Sestak, J. Catsk and P. G. Jarvis, pp. 672-697. Junk N.V., The Hague, Netherlands.
39 Buschmann, H., Fan, Z.-W. and Sauerborn, J. 2005. Effect of resistance-inducing agents on sunflower (Helianthus annuus L.) and its infestation with the parasitic weed Orobanche cumana Wallr. J. Plant Dis. Prot. 112:386-397.
40 Sauerborn, J., Buschmann, H., Ghiasi, K. G. and Kogel, K.-H. 2002. Benzothiadiazole activates resistance in sunflower (Helianthus annuus) to the root-parasitic weed Orobanche cuman. Phytopathology 92:59-64.   DOI
41 Sillero, J. C., Rojas-Molina, M. M., Avila, C. M. and Rubiales, D. 2012. Induction of systemic acquired resistance against rust, ascochyta blight and broomrape in faba bean by exogenous application of salicylic acid and benzothiadiazole. Crop Prot. 34:65-69.   DOI
42 Sindelarova, M., Sindelar, L. and Burketova, L. 2002. Glucose-6-phosphate dehydrogenase, ribonucleases and esterases upon tobacco mosaic virus infection and benzothiodiazole treatment in tobacco. Biol. Plant. 45:423-432.   DOI
43 Stalikas, C. D. 2007. Extraction, separation, and detection methods for phenolic acids and flavonoids. J. Sep. Sci. 30:3268-3295.   DOI
44 Singleton, V. L., Orthofer, R. and Lamuela-Raventos, R. M. 1999. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 299:152-178.   DOI
45 Smirnoff, N. 1993. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol. 125:27-58.   DOI
46 Solecka, D. and Kacperska, A. 2003. Phenylpropanoid deficiency affects the course of plant acclimation to cold. Physiol. Plant. 119:253-262.   DOI
47 Ueno, M., Kumura, Y., Ueda, K., Kihara, J. and Arase, S. 2011. Indole derivatives enhance resistance against the rice blast fungus Magnaporthe oryzae. J. Gen. Plant Pathol. 77:209-213.   DOI
48 Thakur, M. and Sohal, B. S. 2013. Role of elicitors in inducing resistance in plants against pathogen infection: a review. ISRN Biochem. 2013:762412.   DOI
49 Trabelsi, I., Yoneyama, K., Abbes, Z., Amri, M., Xie, X., Kisugi, T., Kim, H. I. and Kharrat, M. 2017. Characterization of strigolactones produced by Orobanche foetida and Orobanche crenata resistant faba bean (Vicia faba L.) genotypes and effects of phosphorous, nitrogen, and potassium deficiencies on strigolactone production. S. Afr. J. Bot. 108:15-22.   DOI
50 Triki, E., Trabelsi, I., Amri, M., Nefzi, F., Kharrat, M. and Abbes, Z. 2018. Effect of benzothiadiazole and salicylic acid resistance inducers on Orobanche foetida infestation in Vicia faba. Tunis. J. Plant Prot. 13:113-125.
51 Veronesi, C., Delavault, P. and Simier, P. 2009. Acibenzolar-Smethyl induces resistance in oilseed rape (Brassica napus L.) against branched broomrape (Orobanche ramosa L.). Crop Prot. 28:104-108.   DOI
52 Gonsior, G., Buschmann, H., Szinicz, G., Spring, O. and Sauerborn, J. 2004. Induced resistance: an innovative approach to manage branched broomrape (Orobanche ramosa) in hemp and tobacco. Weed Sci. 52:1050-1053.   DOI
53 Walters, D. R., Ratsep, J. and Havis, N. D. 2013. Controlling crop diseases using induced resistance: challenges for the future. J. Exp. Bot. 64:1263-1280.   DOI
54 Wang, Y. and Zhang, Y. 2010. Salicylic acid induces the accumulation of defense-related enzymes in Whangkeumbae pear and protects from pear black spot. Front. Agric. China 4:215-219.   DOI
55 Fernandez-Aparicio, M., Kisugi, T., Xie, X., Rubiales, D. and Yoneyama, K. 2014. Low strigolactone root exudation: a novel mechanism of broomrape (Orobanche and Phelipanche spp.) resistance available for faba bean breeding. J. Agric. Food Chem. 62:7063-7071.   DOI
56 Fernandez-Aparicio, M., Sillero, J. C., Perez-de-Luque, A. and Rubiales, D. 2008. Identification of sources of resistance to crenate broomrape (Orobanche crenata) in Spanish lentil (Lens culinaris) germplasm. Weed Res. 48:85-94.   DOI
57 Goldwasser, Y., Plakhine, D., Kleifeld, Y., Zamski, E. and Rubin, B. 2000. The differential susceptibility of vetch (Vicia spp.) to Orobanche aegyptiaca: anatomical studies. Ann. Bot. 85:257-262.   DOI
58 Gravel, V., Antoun, H. and Tweddell, R. J. 2007. Effect of indoleacetic acid (IAA) on the development of symptoms caused by Pythium ultimum on tomato plants. Eur. J. Plant Pathol. 119:457-462.   DOI
59 Habimana, S., Nduwumuremyi, A. and Chinama, R. J. D. 2014. Management of orobanche in field crops: a review. J. Soil Sci. Plant Nutr. 14:43-62.
60 Katoch, R., Mann, A. P. S. and Sohal, B. S. 2005. Enhanced enzyme activities and induction of acquired resistance in pea with elicitors. J. Veg. Sci. 11:67-83.   DOI
61 Kosesakal, T. and Unal, M. 2009. Role of zinc deficiency in photosynthetic pigments and peroxidase activity of tomato seedlings. IUFS J. Biol. 68:113-120.
62 Monci, F., Garcia-Andres, S., Sanchez-Campos, S., Fernandez-Munoz, R., Diaz-Pendon, J. A. and Moriones, E. 2019. Use of systemic acquired resistance and whitefly optical barriers to reduce tomato yellow leaf curl disease damage to tomato crops. Plant Dis. 103:1181-1188.   DOI
63 Xu, B. J. and Chang, S. K. C. 2007. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J. Food Sci. 72:S159-S166.   DOI
64 Yamunarani, K., Jaganathan, R., Bhaskaran, R., Govindaraju, P. and Velazhahan, R. 2004. Induction of early blight resistance in tomato by Quercus infectoria gall extract in association with accumulation of phenolics and defense-related enzymes. Acta Physiol. Plant. 26:281-290.   DOI
65 Walters, D. R. and Fountaine, J. M. 2009. Practical application of induced resistance to plant diseases: an appraisal of effectiveness under field conditions. J. Agric. Sci. 147:523-535.   DOI
66 Kusumoto, D., Goldwasser, Y., Xie, X., Yoneyama, K., Takeuchi, Y. and Yoneyama, K. 2007. Resistance of red clover (Trifolium pratense) to the root parasitic plant Orobanche minor is activated by salicylate but not by jasmonate. Ann. Bot. 100:537-544.   DOI
67 Labrousse, P., Arnaud, M. C., Griveau, Y., Fer, A. and Thalouarn, P. 2004. Analysis of resistance criteria of sunflower recombined inbred lines against Orobanche cumana Wallr. Crop Prot. 23:407-413.   DOI
68 Lopez, A. M. Q. and Lucas, J. A. 2002. Effects of plant defence activators on anthracnose disease of cashew. Eur. J. Plant Pathol. 108:409-420.   DOI
69 Mandal, S. and Mitra, A. 2007. Reinforcement of cell wall in roots of Lycopersicon esculentum through induction of phenolic compounds and lignin by elicitors. Physiol. Mol. Plant Pathol. 71:201-209.   DOI
70 Nascimento, K. J. T., Debona, D., Franca, S. K. S., Goncalves, M. G. M., DaMatta, F. M. and Rodrigues, F. 2014. Soybean resistance to Cercospora sojina infection is reduced by silicon. Phytopathology 104:1183-1191.   DOI
71 Ojha, S. and Chatterjee, N. C. 2012. Induction of resistance in tomato plants against Fusarium oxysporum f. sp. lycopersici mediated through salicylic acid and Trichoderma harzianum. J. Plant Prot. Res. 52:220-225.
72 Passardi, F., Penel, C. and Dunand, C. 2004. Performing the paradoxical: how plant peroxidases modify the cell wall. Trends Plant Sci. 9:534-540.   DOI
73 Perez-de-Luque, A., Eizenberg, H., Grenz, J. H., Sillero, J. C., Avila, C., Sauerborn, J. and Rubiales, D. 2010. Broomrape management in faba bean. Field Crops Res. 115:319-328.   DOI