Browse > Article
http://dx.doi.org/10.5352/JLS.2022.32.11.908

Systemic Acquired Resistance in Plants  

Dawon, Jeon (Department of Biological Sciences, Pusan National University)
Taekyung, Kim (Department of Biological Education, Pusan National University)
Gah-Hyun, Lim (Department of Biological Sciences, Pusan National University)
Publication Information
Journal of Life Science / v.32, no.11, 2022 , pp. 908-917 More about this Journal
Abstract
Systemic acquired resistance (SAR) is a form of systemic immunity that prevents secondary infections of distal uninfected parts of plants by related or unrelated pathogens. SAR is mediated by several SAR-inducing chemicals or mobile signals that accumulate after pathogen infection. Several chemicals that move systemically have already been identified as SAR-inducing factors, despite the fact that the early mobile signal remains unclear. These chemicals can be transported into either the apoplastic or symplastic compartments. Many of the chemicals associated with SAR remain unknown in terms of their transport routes. There is recent evidence that azelaic acid (AzA) and glycerol-3-phosphate (G3P) are transported via plasmodesmata (PD) channels, which regulate the symplastic route. In contrast, salicylic acid (SA) is preferentially transported from pathogen-infected to uninfected parts via the apoplast. The pH gradient and SA deprotonation lead to apoplastic accumulation of SA before it accumulates in the cytosol. Moreover, there is evidence that the mobility of SA over a long distance is crucial for SAR and that the partitioning of SA into the symplast and cuticles is controlled by transpiration. Further research has shown that a portion of the total SA in leaves is partitioned into cuticular waxes. The purpose of this review is to discuss the role of SAR-inducing chemicals and the regulation of transport in SAR.
Keywords
Glycerol-3-phosphate; pipecolic acid; SA transport; salicylic acid; systemic acquired resistance;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ahn, I. P., Kim, S. and Lee, Y. H. 2005. Vitamin B1 functions as an activator of plant disease resistance. Plant Physiol. 138, 1505-1515.   DOI
2 Alvarez, M. E., Pennell, R. I., Meijer, P. J., Ishikawa, A., Dixon, R. A. and Lamb, C. 1998. Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92, 773-784.   DOI
3 An, C. and Mou, Z. 2011. Salicylic acid and its function in plant immunity F. J. Integr. Plant Biol. 53, 412-428.   DOI
4 Baluska, F. 2013. Long-distance systemic signaling and communication in plants. Springer.
5 Bauer, S., Mekonnen, D. W., Hartmann, M., Yildiz, I., Janowski, R., Lange, B., Geist, B., Zeier, J. and Schaffner, A. R. 2021. UGT76B1, a promiscuous hub of small molecule-based immune signaling, glucosylates N-hydroxypipecolic acid, and balances plant immunity. Plant Cell 33, 714-734.   DOI
6 Cai, J., Jozwiak, A., Holoidovsky, L., Meijler, M. M., Meir, S., Rogachev, I. and Aharoni, A. 2021. Glycosylation of N-hydroxy-pipecolic acid equilibrates between systemic acquired resistance response and plant growth. Mol. Plant 14, 440-455.   DOI
7 Cameron, R. K., Paiva, N. L., Lamb, C. J. and Dixon, R. A. 1999. Accumulation of salicylic acid and PR-1 gene transcripts in relation to the systemic acquired resistance (SAR) response induced by Pseudomonas syringae pv. tomato in Arabidopsis. Physiol. Mol. Plant Pathol. 55, 121-130.   DOI
8 Champigny, M. J., Shearer, H., Mohammad, A., Haines, K., Neumann, M., Thilmony, R., He, S. Y., Fobert, P., Dengler, N. and Cameron, R. K. 2011. Localization of DIR1 at the tissue, cellular and subcellular levels during Systemic Acquired Resistance in Arabidopsisusing DIR1: GUS and DIR1: EGFP reporters. BMC Plant Biol. 11, 1-16.   DOI
9 Chanda, B., Xia, Y. E., Mandal, M. K., Yu, K., Sekine, K. T., Gao, Q. M., Selote, D., Hu, Y., Stromberg, A. and Navarre, D. 2011. Glycerol-3-phosphate is a critical mobile inducer of systemic immunity in plants. Nat. Genet. 43, 421-427.   DOI
10 Chaturvedi, R., Krothapalli, K., Makandar, R., Nandi, A., Sparks, A. A., Roth, M. R., Welti, R. and Shah, J. 2008. Plastid ω3-fatty acid desaturase-dependent accumulation of a systemic acquired resistance inducing activity in petiole exudates of Arabidopsis thaliana is independent of jasmonic acid. Plant J. 54, 106-117.   DOI
11 Chaturvedi, R., Venables, B., Petros, R. A., Nalam, V., Li, M., Wang, X., Takemoto, L. J. and Shah, J. 2012. An abietane diterpenoid is a potent activator of systemic acquired resistance. Plant J. 71, 161-172.   DOI
12 Chen, H. J., Hou, W. C., Kuc, J. and Lin, Y. H. 2001. Ca2++-independent excretion modes of salicylic acid in tobacco cell suspension culture. J. Exp. Bot. 52, 1219-1226.
13 Chen, Y. C., Holmes, E. C., Rajniak, J., Kim, J. G., Tang, S., Fischer, C. R., Mudgett, M. B. and Sattely, E. S. 2018. N-hydroxy-pipecolic acid is a mobile metabolite that induces systemic disease resistance in Arabidopsis. Proc. Natl. Acad. Sci. 115, E4920-E4929.   DOI
14 Chen, Z., Zheng, Z., Huang, J., Lai, Z. and Fan, B. 2009. Biosynthesis of salicylic acid in plants. Plant Signal. Behav. 4, 493-496.   DOI
15 Dempsey, D. M. A. and Klessig, D. F. 2012. SOS-too many signals for systemic acquired resistance? Trends Plant Sci. 17, 538-545.   DOI
16 Fu, Z. Q. and Dong, X. 2013. Systemic acquired resistance: turning local infection into global defense. Annu. Rev. Plant Biol. 64, 839-863.   DOI
17 Dempsey, D. M. A., Vlot, A. C., Wildermuth, M. C. and Klessig, D. F. 2011. Salicylic acid biosynthesis and metabolism. Arabidopsis Book 9, e0156.   DOI
18 Ding, P., Rekhter, D., Ding, Y., Feussner, K., Busta, L., Haroth, S., Xu, S., Li, X., Jetter, R. and Feussner, I. 2016. Characterization of a pipecolic acid biosynthesis pathway required for systemic acquired resistance. Plant Cell 28, 2603-2615.   DOI
19 El Shetehy, M., Wang, C., Shine, M. B., Yu, K., Kachroo, A. and Kachroo, P. 2015. Nitric oxide and reactive oxygen species are required for systemic acquired resistance in plants. Plant Signal. Behav. 10, e998544.   DOI
20 Fu, Z. Q., Yan, S., Saleh, A., Wang, W., Ruble, J., Oka, N., Mohan, R., Spoel, S. H., Tada, Y. and Zheng, N. 2012. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486, 228-232.   DOI
21 Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., Ward, E., Kessmann, H. and Ryals, J. 1993. Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261, 754-756.   DOI
22 Gao, Q. M., Kachroo, A. and Kachroo, P. 2014. Chemical inducers of systemic immunity in plants. J. Exp. Bot. 65, 1849-1855.   DOI
23 Gao, Q., M., Yu, K., Xia, Y., Shine, M. B., Wang, C., Navarre, D., Kachroo, A. and Kachroo, P. 2014. Mono-and digalactosyldiacylglycerol lipids function nonredundantly to regulate systemic acquired resistance in plants. Cell Rep. 9, 1681-1691.   DOI
24 Gao, Q. M., Zhu, S., Kachroo, P. and Kachroo, A. 2015. Signal regulators of systemic acquired resistance. Front. Plant Sci. 6, 228.   DOI
25 Hartmann, M. and Zeier, J. 2018. l-lysine metabolism to N-hydroxypipecolic acid: an integral immune-activating pathway in plants. Plant J. 96, 5-21.   DOI
26 Garcion, C., Lohmann, A., Lamodiere, E., Catinot, J., Buchala, A., Doermann, P. and Metraux, J. P. 2008. Characterization and biological function of the ISOCHORI- SMATE SYNTHASE2 gene of Arabidopsis. Plant Physiol. 147, 1279-1287.   DOI
27 Guedes, M. E. M., Richmond, S. and Kuc, J. 1980. Induced systemic resistance to anthracnose in cucumber as influenced by the location of the inducer inoculation with Colletotrichum lagenarium and the onset of flowering and fruiting. Physiol. Plant Pathol. 17, 229-233.   DOI
28 Hartmann, M., Kim, D., Bernsdorff, F., Ajami Rashidi, Z., Scholten, N., Schreiber, S., Zeier, T., Schuck, S., Reichel Deland, V. and Zeier, J. 2017. Biochemical principles and functional aspects of pipecolic acid biosynthesis in plant immunity. Plant Physiol. 174, 124-153.   DOI
29 Hartmann, M. and Zeier, J. 2019. N-hydroxypipecolic acid and salicylic acid: a metabolic duo for systemic acquired resistance. Curr. Opin. Plant Biol. 50, 44-57.   DOI
30 Hartmann, M., Zeier, T., Bernsdorff, F., Reichel Deland, V., Kim, D., Hohmann, M., Scholten, N., Schuck, S., Brautigam, A. and Holzel, T. 2018. Flavin monooxygenase-generated N-hydroxypipecolic acid is a critical element of plant systemic immunity. Cell 173, 456-469.   DOI
31 Holmes, E. C., Chen, Y. C., Mudgett, M. B. and Sattely, E. S. 2021. Arabidopsis UGT76B1 glycosylates N-hydroxy-pipecolic acid and inactivates systemic acquired resistance in tomato. Plant Cell 33, 750-765.   DOI
32 Huang, J., Gu, M., Lai, Z., Fan, B., Shi, K., Zhou, Y. H., Yu, J. Q. and Chen, Z. 2010. Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol. 153, 1526-1538.   DOI
33 Lim, G. H., Shine, M. B., de Lorenzo, L., Yu, K., Cui, W., Navarre, D., Hunt, A. G., Lee, J. Y., Kachroo, A. and Kachroo, P. 2016. Plasmodesmata localizing proteins regulate transport and signaling during systemic acquired immunity in plants. Cell Host Microbe 19, 541-549.   DOI
34 Jung, H. W., Tschaplinski, T. J., Wang, L., Glazebrook, J. and Greenberg, J. T. 2009. Priming in systemic plant immunity. Science 324, 89-91.   DOI
35 Kachroo, A. and Robin, G. P. 2013. Systemic signaling during plant defense. Curr. Opin. Plant Biol. 16, 527-533.   DOI
36 Lim, G. H., Liu, H., Yu, K., Liu, R., Shine, M. B., Fernandez, J., Burch Smith, T., Mobley, J. K., McLetchie, N. and Kachroo, A. 2020. The plant cuticle regulates apoplastic transport of salicylic acid during systemic acquired resistance. Sci. Adv. 6, eaaz0478.   DOI
37 Lim, G. H., Singhal, R., Kachroo, A. and Kachroo, P. 2017. Fatty acid-and lipid-mediated signaling in plant defense. Annu. Rev. Phytopathol. 55, 505-536.   DOI
38 Maldonado, A. M., Doerner, P., Dixon, R. A., Lamb, C. J. and Cameron, R. K. 2002. A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419, 399-403.   DOI
39 Mandal, M.K., Chanda, B., Xia, Y., Yu, K., Sekine, K., Gao, Q. m., Selote, D., Kachroo, A. and Kachroo, P. 2011. Glycerol-3-phosphate and systemic immunity. Plant Signal. Behav. 6, 1871-1874.   DOI
40 Mauch Mani, B. and Slusarenko, A. J. 1996. Production of salicylic acid precursors is a major function of phenyl- alanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell 8, 203-212.   DOI
41 Mishina, T. E. and Zeier, J. 2006. The Arabidopsis flavin-dependent monooxygenase FMO1 is an essential com- ponent of biologically induced systemic acquired resistance. Plant Physiol. 141, 1666-1675.   DOI
42 Pallas, J. A., Paiva, N. L., Lamb, C. and Dixon, R. A. 1996. Tobacco plants epigenetically suppressed in phenylalanine ammonia-lyase expression do not develop systemic acquired resistance in response to infection by tobacco mosaic virus. Plant J. 10, 281-293.   DOI
43 Nandi, A., Welti, R. and Shah, J. 2004. The Arabidopsis thaliana dihydroxyacetone phosphate reductase gene SUPPRESSOR OF FATTY ACID DESATURASE DEFI- CIENCY1 is required for glycerolipid metabolism and for the activation of systemic acquired resistance. Plant Cell 16, 465-477.   DOI
44 Navarova, H., Bernsdorff, F., Doring, A. C. and Zeier, J. 2012. Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell 24, 5123-5141.   DOI
45 Nawrath, C., Heck, S., Parinthawong, N. and Metraux, J. P. 2002. EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. Plant Cell 14, 275-286.   DOI
46 Park, S. W., Kaimoyo, E., Kumar, D., Mosher, S. and Klessig, D. F. 2007. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318, 113-116.   DOI
47 Pieterse, C. M. J., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C. M. and Bakker, P. A. H. M. 2014. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52, 347-375.   DOI
48 Rekhter, D., Ludke, D., Ding, Y., Feussner, K., Zienkie- wicz, K., Lipka, V., Wiermer, M., Zhang, Y. and Feussner, I. 2019. Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid. Science 365, 498-502.   DOI
49 Riedlmeier, M., Ghirardo, A., Wenig, M., Knappe, C., Koch, K., Georgii, E., Dey, S., Parker, J. E., Schnitzler, J. P. and Vlot, A. C. 2017. Monoterpenes support systemic acquired resistance within and between plants. Plant Cell 29, 1440-1459.   DOI
50 Sagi, M. and Fluhr, R. 2006. Production of reactive oxy- gen species by plant NADPH oxidases. Plant Physiol. 141, 336-340.   DOI
51 Serrano, M., Wang, B., Aryal, B., Garcion, C., Abou Mansour, E., Heck, S., Geisler, M., Mauch, F., Nawrath, C. and Metraux, J. P. 2013. Export of salicylic acid from the chloroplast requires the multidrug and toxin extrusion-like transporter EDS5. Plant Physiol. 162, 1815-1821.   DOI
52 Shah, J. 2003. The salicylic acid loop in plant defense. Curr. Opin. Plant Biol. 6, 365-371.   DOI
53 Shah, J. and Zeier, J. 2013. Long-distance communication and signal amplification in systemic acquired resistance. Front. Plant Sci. 4, 30.
54 Shan, L. and He, P. 2018. Pipped at the post: pipecolic acid derivative identified as SAR regulator. Cell 173, 286-287.   DOI
55 Shine, M. B., Gao, Q. M., Chowda Reddy, R. V., Singh, A. K., Kachroo, P. and Kachroo, A. 2019. Glycerol-3-phosphate mediates rhizobia-induced systemic signaling in soybean. Nat. Commun. 10, 1-13.   DOI
56 Singh, A., Lim, G. H. and Kachroo, P. 2017. Transport of chemical signals in systemic acquired resistance. J. Integr. Plant Biol. 59, 336-344.   DOI
57 Singh, V., Singh, P. K., Siddiqui, A., Singh, S., Banday, Z. Z. and Nandi, A. K. 2016. Over-expression of Arabidopsis thaliana SFD1/GLY1, the gene encoding plastid localized glycerol-3-phosphate dehydrogenase, increases plastidic lipid content in transgenic rice plants. J. Plant Res. 129, 285-293.   DOI
58 Song, J. T., Lu, H., McDowell, J. M. and Greenberg, J. T. 2004. A key role for ALD1 in activation of local and systemic defenses in Arabidopsis. Plant J. 40, 200-212.   DOI
59 Spoel, S. H. and Dong, X. 2012. How do plants achieve immunity? Defence without specialized immune cells. Nat. Rev. Immunol. 12, 89-100.   DOI
60 Strawn, M. A., Marr, S. K., Inoue, K., Inada, N., Zubieta, C. and Wildermuth, M. C. 2007. Arabidopsis isochorismate synthase functional in pathogen-induced salicylate biosynthesis exhibits properties consistent with a role in diverse stress responses. J. Biol. Chem. 282, 5919-5933.   DOI
61 Sun, T., Busta, L., Zhang, Q., Ding, P., Jetter, R. and Zhang, Y. 2018. TGACG-BINDING FACTOR 1 (TGA 1) and TGA 4 regulate salicylic acid and pipecolic acid biosynthesis by modulating the expression of SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD 1) and CALMODULIN-BINDING PROTEIN 60 g (CBP 60 g). New Phytol. 217, 344-354.   DOI
62 Sun, T., Huang, J., Xu, Y., Verma, V., Jing, B., Sun, Y., Orduna, A. R., Tian, H., Huang, X. and Xia, S. 2020. Redundant CAMTA transcription factors negatively regulate the biosynthesis of salicylic acid and N-hydroxypipecolic acid by modulating the expression of SARD1 and CBP60g. Mol. Plant 13, 144-156.   DOI
63 Truman, W. and Glazebrook, J. 2012. Co-expression analysis identifies putative targets for CBP60g and SARD1 regulation. BMC Plant Biol. 12, 1-17.   DOI
64 Tuzun, S. and Kuc, J. 1985. Movement of a factor in tobacco infected with Peronospora tabacina Adam which systemically protects against blue mold. Physiol. Plant Pathol. 26, 321-330.   DOI
65 Vernooij, B., Friedrich, L., Morse, A., Reist, R., Kolditz Jawhar, R., Ward, E., Uknes, S., Kessmann, H. and Ryals, J. 1994. Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is re- quired in signal transduction. Plant Cell 6, 959-965.   DOI
66 Vlot, A. C., Dempsey, D. M. A. and Klessig, D. F. 2009. Salicylic acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 47, 177-206.   DOI
67 Wang, C., El Shetehy, M., Shine, M. B., Yu, K., Navarre, D., Wendehenne, D., Kachroo, A. and Kachroo, P. 2014. Free radicals mediate systemic acquired resistance. Cell Rep. 7, 348-355.   DOI
68 Wang, L., Tsuda, K., Truman, W., Sato, M., Nguyen, L. V., Katagiri, F. and Glazebrook, J. 2011. CBP60g and SARD1 play partially redundant critical roles in salicylic acid signaling. Plant J. 67, 1029-1041.   DOI
69 Wang, C., Huang, X., Li, Q., Zhang, Y., Li, J. L. and Mou, Z. 2019. Extracellular pyridine nucleotides trigger plant systemic immunity through a lectin receptor kinase/BAK1 complex. Nat. Commun. 10, 1-16   DOI
70 Wang, C., Liu, R., Lim, G. H., de Lorenzo, L., Yu, K., Zhang, K., Hunt, A. G., Kachroo, A. and Kachroo, P. 2018. Pipecolic acid confers systemic immunity by regulating free radicals. Sci. Adv. 4, eaar4509.   DOI
71 Wendehenne, D., Gao, Q. M., Kachroo, A. and Kachroo, P. 2014. Free radical-mediated systemic immunity in plants. Curr. Opin. Plant Biol. 20, 127-134.   DOI
72 Wildermuth, M. C., Dewdney, J., Wu, G. and Ausubel, F. M. 2001. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414, 562-565.   DOI
73 Xia, Y., Gao, Q. M., Yu, K., Lapchyk, L., Navarre, D., Hildebrand, D., Kachroo, A. and Kachroo, P. 2009. An intact cuticle in distal tissues is essential for the induction of systemic acquired resistance in plants. Cell Host Microbe 5, 151-165.   DOI
74 Xia, Y., Suzuki, H., Borevitz, J., Blount, J., Guo, Z., Patel, K., Dixon, R. A. and Lamb, C. 2004. An extracellular aspartic protease functions in Arabidopsis disease resistance signaling. EMBO J. 23, 980-988.   DOI
75 Yalpani, N., Leon, J., Lawton, M. A. and Raskin, I. 1993. Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco. Plant Physiol. 103, 315-321.   DOI
76 Yang, Y., Zhao, J., Liu, P., Xing, H., Li, C., Wei, G. and Kang, Z. 2013. Glycerol-3-phosphate metabolism in wheat contributes to systemic acquired resistance against Puccinia striiformis f. sp. tritici. PLoS One 8, e81756.   DOI
77 Zhang, Y., Xu, S., Ding, P., Wang, D., Cheng, Y. T., He, J., Gao, M., Xu, F., Li, Y. and Zhu, Z. 2010. Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors. Proc. Natl. Acad. Sci. 107, 18220-18225.   DOI
78 Yu, K., Soares, J. M., Mandal, M. K., Wang, C., Chanda, B., Gifford, A. N., Fowler, J. S., Navarre, D., Kachroo, A. and Kachroo, P. 2013. A feedback regulatory loop between G3P and lipid transfer proteins DIR1 and AZI1 mediates azelaic-acid-induced systemic immunity. Cell Rep. 3, 1266-1278.   DOI
79 Yu, L., Zhou, C., Fan, J., Shanklin, J. and Xu, C. 2021. Mechanisms and functions of membrane lipid remodeling in plants. Plant J. 107, 37-53.   DOI
80 Yu, X., Li, B., Fu, Y., Jiang, D., Ghabrial, S. A., Li, G., Peng, Y., Xie, J., Cheng, J. and Huang, J. 2010. A geminivirus-related DNA mycovirus that confers hypovirulence to a plant pathogenic fungus. Proc. Natl. Acad. Sci. 107, 8387-8392.   DOI
81 Zhou, Q., Meng, Q., Tan, X., Ding, W., Ma, K., Xu, Z., Huang, X. and Gao, H. 2021. Protein phosphorylation changes during systemic acquired resistance in Arabidopsis thaliana. Front. Plant Sci. 12, 748287.   DOI
82 Zoeller, M., Stingl, N., Krischke, M., Fekete, A., Waller, F., Berger, S. and Mueller, M. J. 2012. Lipid profiling of the Arabidopsis hypersensitive response reveals specific lipid peroxidation and fragmentation processes: biogenesis of pimelic and azelaic acid. Plant Physiol. 160, 365-378.   DOI