• Title/Summary/Keyword: s-glass fiber

Search Result 323, Processing Time 0.034 seconds

Dental fiber-post resin base material: a review

  • Lamichhane, Aashwini;Xu, Chun;Zhang, Fu-Qiang
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.1
    • /
    • pp.60-65
    • /
    • 2014
  • Teeth that have short clinical crown, which are not alone enough to support the definitive restoration can be best treated using the post and core system. The advantages of fiber post over conventional metallic post materials have led to its wide acceptance. In addition to that the combination of aesthetic and mechanical benefits of fiber post has provided it with a rise in the field of dentistry. Also the results obtained from some clinical trials have encouraged the clinicians to use the fiber posts confidently. Fiber posts are manufactured from pre-stretched fibers impregnated within a resin matrix. The fibers could that be of carbon, glass/silica, and quartz, whereas Epoxy and bis-GMA are the most widely used resin bases. But recently studies are also found to be going on for polyimide as possible material for the fiber post resin base as a substitute for the conventional materials.

EFFECT OF FIBER DIRECTION ON THE POLYMERIZATION SHRINKAGE OF FIBER-REINFORCED COMPOSITES (섬유 보강 복합레진의 섬유 방향이 중합수축에 미치는 영향)

  • Yom, Joong-Won;Lee, In-Bog
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.4
    • /
    • pp.364-370
    • /
    • 2009
  • The aim of this study was to evaluate the effect of fiber direction on the polymerization shrinkage of fiber-reinforced composite. The disc-shaped flowable composite specimens (d = 10 mm, h = 2 mm, Aeliteflo A2, Bisco, Inc., IL, USA) with or without glass fiber bundle (X-80821P Glass Fiber, Bisco, Inc., IL, USA) inside were prepared, and the longitudinal and transversal polymerization shrinkage of the specimens on radial plane were measured with strain gages (Linear S-series 350${\Omega}$, CAS, Seoul, Korea). In order to measure the free polymerization shrinkage of the flowable composite itself, the disc-shaped specimens (d = 7 mm, h = 1 mm) without fiber were prepared, and the axial shrinkage was measured with an LVDT (linear variable differential transformer) displacement sensor. The cross-section of the polymerized specimens was observed with a scanning electron microscope to examine the arrangement of the fiber bundle in composite. The mean polymerization shrinkage value of each specimen group was analyzed with ANOVA and Scheffe post-hoc test (${\alpha}$=0.05). The radial polymerization shrinkage of fiber-reinforced composite was decreased in the longitudinal direction of fiber, but increased in the transversal direction of fiber (p<0.05). We can conclude that the polymerization shrinkage of fiber-reinforced composite splint or restoratives is dependent on the direction of fiber.

Evaluation for Application of IOM Sampler for Agricultural Farmer's Inhalation Exposure to Kresoxim-methyl and Fenthion (농작업자의 Kresoxim-methyl과 fenthion에 대한 호흡노출량 측정을 위한 IOM 채집기의 효율성 평가)

  • Lee, Jiho;Kim, Eunhye;Lee, Jonghwa;Shin, Yongho;Maasfeld, Wolfgang;Choi, Hoon;Moon, Joon-Kwan;Lee, Hyeri;Kim, Jeong-Han
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.3
    • /
    • pp.230-240
    • /
    • 2015
  • An IOM sampler equipped with glass fiber filter has been recently utilized instead of solid adsorbent, which was used to measure the inhalation exposure of agricultural operator to pesticides. The aim of this study is to validate the efficacy of an IOM sampler by measuring the trapping efficiency and breakthrough using kresoxim-methyl water-dispersible granule and fenthion emulsifiable concentrate. On LC-MS/ MS, minimum detection level was 12.5 pg and method limit of detection was 5.0 ng/mL. Good linearity ($R^2$ > 0.999) for matrix matched standards was obtained. Recoveries of pesticides from glass fiber filter were 102-109% (kresoxim-methyl) and 97-104% (fenthion) while those from XAD-2 resin were 94-98% (kresoxim methyl) and 93-100% (fenthion). Trapping efficiency test was performed with personal air pumps and IOM sampler (glass fiber filter) connected with solid adsorbent (XAD-2 resin) with two types of formulation (solid and liquid) which were diluted by standard rate and sprayed to IOM sampler. Those pesticides were trapped only in glass fiber filter without any breakthrough to solid adsorbent. After spiking of pesticides to glass fiber filter, breakthrough test was carried out with IOM sampler (glass fiber filter) which was connected with solid adsorbent. As a results, 87-101% of kresoxim-methyl and 96-105% of fenthion remained in spiked glass fiber filter, however, no pesticides were detected in second glass fiber filter and solid adsorbent. In conclusion, IOM sampler which equipped with glass fiber filter can be applied widely for pesticide inhalation exposure study since it has good trapping efficiency and adsorption capacity, regardless of the solid or liquid formulation.

A STUDY ON THE MARGINAL FIDELITY AND THE FRACTURE STRENGTH OF CEROMERS (수종Ceromer의 변연적합도와 파절강도에 관한 비교연구)

  • Chang Hee-Won;Lee Jong-Hyuk;Lim Heon-Song;Cho In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.4
    • /
    • pp.438-452
    • /
    • 2005
  • Statement of problem: The use of Ceromer is increasing in dentistry. But, the research of Ceromer has not been conducted much. Purpose : This study was to evaluate the marginal fidelity and internal adaptation according to marginal position. Materials and Methods: In this study 60 resin crowns were fabricated. The measurements of the marginal fidelity were carried out using stereomicroscope $SZ-40^{(R)}$ (Olympus, Japan) and the measurements of fracture strength were done using Instron $8871^{(R)}$ (Instron Co., U.S.A.) at a cross head speed of 1mm/min. All of the measurements were statistically analyzed by ANOVA test, multiple range test and Weibull analysis. Statistical significance was set in advance at the probability level of less than 0.05. All of the measurements were analyzed with Window $SPSS^{(R)}$ Version 10.0 soft ware for the personal computer. Results : 1. There were no statistical differences of the marginal fidelity between $Targis^{(R)}$ and $Tescera^{(R)}$, but difference between these two and $BelleGlass^{(R)}$ according to materials. 2. There were no statistical differences of the marginal fidelity between no fiber group and fiber group. There were no interactions between each maerial and with/without fiber group in the marginal fidelity 3. There were statistical differences of the fracture strength between $Tescera^{(R)}$ and $BelleGlass^{(R)}$ but no statistical differences of the fracture strength between $Targis^{(R)}$ and $Tescera^{(R)}$, $Targis^{(R)}$ and $BelleGlass^{(R)}$ according to materials. 4 There were statistical differences of the fracture strength between no fiber group and fiber group. There were no interactions between each material and with/without fiber group in the fracture strength. 5. When comparing the fracture surface, no fiber group showed the resin which were fractured at the labial surface and separated from the adhesion surface. In fiber group, the fractures took a place in resin compartments. Conclusion. The marginal fidelity and the fracture strength were clinically acceptable. From these results, $Targis^{(R)}$ and $Tescera^{(R)}$ were superior than $BelleGlass^{(R)}$ in the marginal fidelity But, when applying these resin crowns in clinic, more careful consideration is needed and further study is recommended.

Thermal conductivity of PLA-bamboo fiber composites

  • Takagi, Hitoshi;Kako, Shuhei;Kusano, Koji;Ousaka, Akiharu
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.377-384
    • /
    • 2007
  • 'Green' composites were fabricated from poly lactic acid (PLA) and bamboo fibers by using a conventional hot pressing method. The insulating properties of the PLA-bamboo fiber 'green' composites were evaluated by determination of the thermal conductivity, which was measured using a hot-wire method. The thermal conductivity values were compared with theoretical estimations. It was demonstrated that thermal conductivity of PLA-bamboo fiber 'green' composites is smaller than that of conventional composites, such as glass fiber reinforced plastics (GFRPs) and carbon fiber reinforced plastics (CFRPs). The thermal conductivity of PLA-bamboo fiber 'green' composites was significantly influenced by their density, and was in fair agreement with theoretical predictions based on Russell's model. The PLA-bamboo fiber composites have low thermal conductivity comparable with that of woods.

Temperature Effects on Impact Fracture Mechanisms of Glass Fiber/Polypropylene Campsites (유리섬유/폴리프로필렌 복합재료의 충격파괴기구에 대한 온도효과)

  • KOH S. W.;Um Y. S.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.314-319
    • /
    • 2004
  • Many of researches regarding mechanical properties of composite materials are associated with humid environment and temperature. Especially the temperature is a very important factor influencing the design of thermoplastic composites. However, the effect of temperature on impact behavior of reinforced composites have not yet been fully explored. An approach which predicts critical fracture toughness GIC was performed by the impact test in this work The main goal of this work is to study effects of temperature in the impact test with glass fiber/polypropylene(GF/pp) composites. The critical fracture energy and failure mechanisms of GF/PP composites are investigated in the temperature range of $60^{\circ}C\;to\;-50^{\circ}C$ by impact test. The critical fracture energy shows a maximum at ambient temperature and it tends to decrease as temperature goes up or goes down. Major failure mechanisms can be classified such as fiber matrix debonding, fiber pull-out and/or delamination and matrix deformation.

  • PDF

Structural damping of composite materials using combined FE and lamb wave method

  • Ben, B.S.;Ben, B.A.;Kweon, S.H.;Yang, S.H.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.6
    • /
    • pp.1047-1065
    • /
    • 2014
  • The article presents the methodology for finding material damping capacity at higher frequency and at relatively lower amplitudes. The Lamb wave dispersion theory and loss less finite element model is used to find the damping capacity of composite materials. The research has been focused on high frequency applications materials. The method was implemented on carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) plates. The Lamb waves were generated using ultrasonic pulse generator setup. The hybrid method has been explored in this article and the results have been compared with bandwidth methods available in the literature.

A test of the filtering efficiency of glass fiber filter against atmospheric sulfur gases (글래스 파이버 필터를 이용한 가스상 황화합물들의 여과제거특성 비교연구)

  • Kim, K.H.;Choi, Y.J.
    • Analytical Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.65-72
    • /
    • 2006
  • In this study, the filtering characteristics of sulfur gases were investigated from a number of respects. For the purpose of this study, a standard gas containing a single oxidized S ($SO_2$) and five reduced S compounds (RSCs) including $H_2S$, $CH_3SH$, DMS, $CS_2$, and DMDS was prepared. After flowing this standard gas through a glass fiber filter, its removal efficiencies were examined by comparing the concentrations between prior to and after its passage. The results indicated that almost complete removal of $SO_2$ was achieved by this filtering, while the patterns for RSCs were distinguished by such factors as molecular weight or reactivity. It was found that about 60% of the most reactive RSC, $H_2S$ was removed by filter, while the heavy RSC generally showed removal rate of about 5% or less.

The Bending Analysis of Three Phase Polymer Composite Plate Reinforced by Glass Fiber and Titanium Oxide Particles Including Creep Effect

  • Duc, Nguyen Dinh;Minh, Dinh Khac;VanThu, Pham
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.360-365
    • /
    • 2010
  • Three phase composite materials are widely used in the shipbuilding industry. When reinforced with fiber and particle, the physical and mechanical properties of polymer composite materials are improved. This paper presents the bending analysis of a three phase composite plate with an epoxy matrix, reinforced glass fiber and titanium oxide particles including creep effect when shear stress is taken into account. The obtained results indicate that creep strains lead to compression in the composite material. Introducing reinforced fibers and particles reduces the plate's deflection, when increasing the stretch coefficient allows the calculation of creep deflection during a long loading period.

The effect of acid environment and thawing and freezing cycles on the mechanical behavior of fiber-reinforced concrete

  • A.R. Rahimi Chakdel;S.M. Mirhosseini;A.H. Joshagani;M.R.M. Aliha
    • Structural Engineering and Mechanics
    • /
    • v.90 no.5
    • /
    • pp.481-492
    • /
    • 2024
  • This research examined the mechanical behavior of fiber-reinforced concrete at unstable environmental conditions. Concrete composites with varying percentages of steel and glass fibers were analyzed. Compressive, indirect tensile, and fracture toughness properties were evaluated using the Edge Notched Disc Bend (ENDB) test under freezing-thawing and acidic environments and the results were compared with normal conditions. Steel fibers decreased the strength in the specified cycles, while glass fibers showed a normal strength trend. The compressive, tensile and fracture toughness of the samples containing 1.5 vol.% fibers showed a 1.28-, 2.13- and 4.5-fold enhancement compared to samples without fibers, after 300 freezing-thawing cycles, respectively.