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Abstract

Three phase composite materials are widely used in the shipbuilding industry. When reinforced with fiber and particle, the 

physical and mechanical properties of polymer composite materials are improved. This paper presents the bending analysis of 

a three phase composite plate with an epoxy matrix, reinforced glass fiber and titanium oxide particles including creep effect 

when shear stress is taken into account. The obtained results indicate that creep strains lead to compression in the composite 

material. Introducing reinforced fibers and particles reduces the plate’s deflection, when increasing the stretch coefficient 

allows the calculation of creep deflection during a long loading period.

Key words: Bending, Three phase composite, Plate, Creep

* Professor, Corresponding author *** MA
E-mail: ducnd@vnu.edu.vn  Tel: +84-4-37547565  Fax: +84-4-37547460 *** Professor

1. Introduction

When a structure is loaded by periodic constant loads or 

thermal loads, it will experience elastic strain as well as creep 

strain.

The creep phenomenon was first considered in the 1920s 

during the analysis of metal under high thermal loads. 

Since then, creep phenomenon has undergone extensive 

research from the 1950s-1960s until present-day. In addition 

to theoretical results, experimental evidence has proven 

the existence of creep strain and its effect on material strain 

(Iliushin and Ogibalov, 1966; Iliushin and Pobedrya, 1970; 

Malmeiter et al., 1980; Rabotnov, 1966, 1998; Rjanhixin, 

1968). In creep research, function of time is often used. If we 

consider v(τ), in which τ∈(-∞,t] is a physical and mechanical 

process, then creep is considered as a function of v(τ). The 

expressions for of viscoelasticity and elastoplasticity are as 

follow (Iliushin and Ogibalov, 1966; Iliushin and Pobedrya, 

1970; Malmeiter et al., 1980; Rabotnov, 1966, 1998; Rjanhixin, 

1968):
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v(t) is a periodic function; in other words, in order for v(t) to be a periodic function K of variable (t-
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We considered a square three-phase plate of size a×b consisting of fibers reinforced along the x 
axis. The plate had thickness to aspect ratio 20/1/ =ah and was simply supported on all edges. 
Moreover, the plate was subjected to a transverse load distributed on the surface, as shown in Fig. 2.  
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The multiple term in Eq. (5) has the following form (Grin and Adkinc, 1985; Malmeiter et al., 
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Eq. (7) is Hooke’s law for viscoelastic materials. Here the Bijkl and Kijkl (t-τ) are obtained from 
experiments. 

Consider a plate made of a 3-phase composite Fig. 1. 
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The function ( )θ−tA66
~

 signifies the creep property of the material and can be determined from 
experiments. It is normally expressed as (Malmeiter et al., 1980): 

Fig. 1. Three phase composite plate.
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load distributed on the surface, as shown in Fig. 2. 
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By introducing Eqs. (14-16) into (12), we obtain the equation for the deflection c(t) of the plate’s 
central point, which is a function of time t: 

( ) ( ) ( ) ( ) ( ) ( )∫ =−−++⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

06622

4

22

4

1

44 ~22 qdctA
ba

Btc
ba

DDtc
b

Dtc
a

D xyyx θθθππππ
          (17) 

In abbreviate form, Eq. (17) becomes: 
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To solve Eq. (18) we need to know of ( )θ−tA66
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From Eq. (20) and Eq. (22) we have: 
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By introducing Eqs. (14-16) into (12), we obtain the equation for the deflection c(t) of the plate’s 
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From Eq. (20) and Eq. (22) we have: 
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From Eq. (20) and Eq. (22) we have:

 7

   ( ) ( ) ( ) 0~
0

*
66 =−−+ qtcADDtcnD             (23) 

The condition for initial elasticity: 

( )
( ) 22

4

1

44
00

0

2
0

ba
DD

b
D

a
D

q
D
qtcc

xyyx
πππ

++⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

====        (24) 

The root of Eq. (23) can be expressed as: 

( ) n
t

D
ADD

e
ADD

q
D
q

ADD
qtc

*
66

~

*
66

00
*
66

~~
−

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−+

−
=                    (25) 

 

2.2 Numerical research 

Consider a 3-phase composite plate having the following properties:  

Polymer epoxy matrix Em = 2.75 GPa 35.0=mν  

Glass fiber Ea = 72.38 GPa 2.0=aν  

Titanium dioxide particle Ec = 147 GPa 21.0=cν  
 

The deflection c(t) is expressed in Eq. (25) corresponding to each of the following cases: 

 Case 1 Case 2 
  Titanium dioxide 

volume ratio ξc 0.2 0.3 
  Glass fiber volume 

ratio ξa 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 
Considering time t 1,000, 5,000, 10,000, 50,000, 100,000 hours 

*
66A  and n are given the values 200 and 106, respectively. 

The results for the plate’s deflection caused by creep with various volume ratios of particles and 
fibers are provided in Tables 1-7.  

 
Table 1. Creep displacement (mm) of a 2-phase polymer composite (without added particle) 

ξc = 0   
 t = 1,000 t = 5,000 t = 10,000 t = 50,000 t = 100,000 

ξa = 0  - 1.4968 - 1.4911  - 1.4839 - 1.4277 - 1.3604 
ξa = 0,1  - 0.0363 - 0.0362 - 0.0360 - 0.0346 - 0.0329 

(23)
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2.2 Numerical research

Consider a 3-phase composite plate having the following 

properties: 

Polymer epoxy matrix Em = 2.75 GPa Vm = 0.35
Glass fiber Ea = 72.38 GPa V1 = 0.2
Titanium dioxide particle Ec = 147 GPa Vc = 0.21

The deflection c(t) is expressed in Eq. (25) corresponding 

to each of the following cases:

Case 1 Case 2

Titanium dioxide volume ratio ξc 0.2 0.3

Glass fiber volume ratio ξa 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

Considering time t 1,000, 5,000, 10,000, 50,000, 
100,000 hours
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we obtain the plate’s deflection equation when creep strain is taken into account: 
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Here: 
12

3hB =  

We considered a square three-phase plate of size a×b consisting of fibers reinforced along the x 
axis. The plate had thickness to aspect ratio 20/1/ =ah and was simply supported on all edges. 
Moreover, the plate was subjected to a transverse load distributed on the surface, as shown in Fig. 2.  
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            Fig. 2. Rectangular plate, free boundary condition bearing constant bending load.  

The root of Eq. (12) is: 
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Considering the following relationship: 

Fig. 2.  Rectangular plate, free boundary condition bearing constant 
bending load. 
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Table 1.  Creep displacement (mm) of a 2-phase polymer composite (without added particle)

ξc = 0  

t = 1,000 t = 5,000 t = 10,000 t = 50,000 t = 100,000

ξa = 0 - 1.4968 - 1.4911  - 1.4839 - 1.4277 - 1.3604

ξa = 0,1 - 0.0363 - 0.0362 - 0.0360 - 0.0346 - 0.0329

ξa = 0,2 - 0.0013 - 0.0013 - 0.0013 - 0.0012 - 0.0012

ξa = 0,3 - 2.0680e-5 - 2.0597e-5 - 2.0494e-5 - 1.9691e-5 - 1.8731e-5

ξa = 0,4 - 4.2996e-5 - 4.2824e-5 - 4.2610e-5 - 4.0940e-5 - 3.8944e-5

Table 2.  Creep displacement (mm) of a 2-phase polymer composite (particle volume ratio is 5%)

ξc = 0.05; n = 106

t = 1,000 t = 5,000 t = 10,000 t = 50,000 t = 100,000

ξa = 0 - 1.2400 - 1.2352 - 1.2292 - 1.1825 - 1.1266

ξa = 0,1 - 0.0476 - 0.0474 - 0.0471 - 0.0453 - 0.0431

ξa = 0,2 - 0.0044 - 0.0043 - 0.0043 - 0.0042 - 0.004

ξa = 0,3 - 8.5271e-004 - 8.4931e-004 - 8.4508e-004 - 8.12E-04 - 7.72E-04

ξa = 0,4 - 6.5369e-00 - 6.5108e-004 - 6.4784e-004 - 6.22E-04 - 5.92E-04

Table 3.  Creep displacement (mm) of a 3-phase polymer composite (particle volume ratio is 10%)

ξc = 0,1 

t = 1,000 t = 5,000 T = 10,000 t = 50,000 t = 100,000

ξa = 0 - 1.0293 - 1.0253 - 1.0203 - 0.9814 - 0.9349

ξa = 0,1 - 0.0577 - 0.0574 - 0.0572 - 0.0549 - 0.0523

ξa = 0,2 - 0.0085 - 0.0084 - 0.0084 - 0.0081 - 0.0077

ξa = 0,3 - 0.0026 -0.0026 - 0.0026 - 0.0025 - 0.0024

ξa = 0,4 - 0.0018 - 0.0018 - 0.0018 - 0.0017 - 0.0016

Table 4.  Creep displacement (mm) of a 3-phase polymer composite (particle volume ratio is 15%)

ξc = 0.15; n = 106

t = 1,000 t = 5,000 t = 10,000 t = 50,000 T = 100,000

ξa = 0 - 0.8553 - 0.852 - 0.8478 - 0.8154 - 0.7767

ξa = 0,1 - 0.0663 - 0.066 - 0.0657 - 0.0631 - 0.0601

ξa = 0,2 - 0.0131 - 0.013 - 0.013 - 0.0125 - 0.0118

ξa = 0,3 - 0.0049 - 0.0049 - 0.0049 - 0.0047 - 0.0045

ξa = 0,4 - 0.0033 - 0.0033 - 0.0033 - 0.0032 - 0.003

Table 5.  Creep displacement (mm) of a 3-phase polymer composite (particle volume ratio is 20%)

ξc = 0,2

t = 1,000 t = 5,000 t = 10,000 t = 50,000 t = 100,000

ξa = 0 - 0.7109 - 0.7081 - 0.7047 - 0.6777 - 0.6454

ξa = 0,1 - 0.0732 - 0.0729 - 0.0725 - 0.0697 - 0.0663

ξa = 0,2 - 0.0178 - 0.0178 - 0.0177 - 0.0170 - 0.0162

ξa = 0,3 - 0.0076 - 0.0076 - 0.0075 - 0.0072 - 0.0069

ξa = 0,4 - 0.0051 - 0.0051 - 0.0050 - 0.0048 - 0.0046
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A*
66 and n are given the values 200 and 106, respectively.

The results for the plate’s deflection caused by creep with 

various volume ratios of particles and fibers are provided in 

Tables 1-7. 

Creep displacement of a 3-phase polymer composite 

depend on particle volume ratio and time (1,000 hour, 5,000 

hour, 10,000 hour, 50,000 hour, 100,000 hour) presented in 

Figs. 3-7.

Table 6. Creep displacement (mm) of a 3-phase polymer composite (particle volume ratio is 25%)

ξc = 0.25; n = 106

t = 1000 t = 5000 t = 10000 t = 50000 t = 100000

ξa = 0 - 0.5905 - 0.5882 - 0.5853 - 0.5628 - 0.536

ξa = 0,1 - 0.0783 - 0.078 - 0.0776 - 0.0746 - 0.0709

ξa = 0,2 - 0.0225 - 0.0224 - 0.0223 - 0.0214 - 0.0204

ξa = 0,3 - 0.0105 - 0.0104 - 0.0104 - 0.01 - 0.0095

ξa = 0,4 - 0.0069 - 0.0069 - 0.0069 - 0.0066 - 0.0063

Table 7. Creep displacement (mm) of a 3-phase polymer composite (particle volume ratio is 30%)

ξc = 0,3 

t = 1,000 t = 5,000 t = 10,000 t = 50,000 t = 100,000

ξa = 0 - 0.4898 - 0.4878 - 0.4855 - 0.4668 - 0.4445

ξa = 0,1 - 0.0816 - 0.0813 - 0.0808 - 0.0777 - 0.0739

ξa = 0,2 - 0.0268 - 0.0267 - 0.0266 - 0.0256 - 0.0243

ξa = 0,3 - 0.0133 - 0.0133 - 0.0132 - 0.0127 - 0.0121

ξa = 0,4 - 0.0089 - 0.0088 - 0.0088 - 0.0085 - 0.0080
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Fig. 3. The creep displacement variation at t = 1,000 hour. Fig. 3. The creep displacement variation at t = 1,000 hour.
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Fig. 4. The creep displacement variation at t = 5,000 hour. 

      

Fig. 5. The creep displacement variation at t = 10,000 hour. 

 

Fig. 6. The creep displacement variation at t = 50,000 hour. 

Fig. 4. The creep displacement variation at t = 5,000 hour.
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Fig. 4. The creep displacement variation at t = 5,000 hour. 

      

Fig. 5. The creep displacement variation at t = 10,000 hour. 

 

Fig. 6. The creep displacement variation at t = 50,000 hour. 

Fig. 5. The creep displacement variation at t = 10,000 hour.
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Fig. 4. The creep displacement variation at t = 5,000 hour. 

      

Fig. 5. The creep displacement variation at t = 10,000 hour. 

 

Fig. 6. The creep displacement variation at t = 50,000 hour. Fig. 6. The creep displacement variation at t = 50,000 hour.
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3. Conclusions

In this paper, we researched the bending of a 3-phase 

composite plate in which creep was taken into account. 

The deflection equation was obtained for a composite plate 

possessing the creep effect. 

From the analysis of the 3-phase composite plate 

consisting of a polymer matrix, glass fiber and titanium 

dioxide, the following conclusions were produced:

- The creep strain of the 3-phase composite plate 

considered in this research is not significant. 

- The creep strain causes the plate to shrink, indicating 

that the plate’s bending deflection was reduced.

- Changes in the volume ratios of the fiber and particle 

components can lead to changes in the creep strain of the 

plate in bending. The creep strain of plate will reduce if 

the volume ratios of the fiber component in composite 

increases.
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Fig. 7. The creep displacement variation at t = 100,000 hour. 
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