DOI QR코드

DOI QR Code

The effect of acid environment and thawing and freezing cycles on the mechanical behavior of fiber-reinforced concrete

  • A.R. Rahimi Chakdel (Department of Civil Engineering, Arak Branch, Islamic Azad University) ;
  • S.M. Mirhosseini (Department of Civil Engineering, Arak Branch, Islamic Azad University) ;
  • A.H. Joshagani (Department of Chemical Engineering, Arak Branch, Islamic Azad University) ;
  • M.R.M. Aliha (Welding and Joining Research Center, School of Industrial Engineering, Iran University of Science and Technology (IUST))
  • Received : 2023.11.12
  • Accepted : 2024.04.23
  • Published : 2024.06.10

Abstract

This research examined the mechanical behavior of fiber-reinforced concrete at unstable environmental conditions. Concrete composites with varying percentages of steel and glass fibers were analyzed. Compressive, indirect tensile, and fracture toughness properties were evaluated using the Edge Notched Disc Bend (ENDB) test under freezing-thawing and acidic environments and the results were compared with normal conditions. Steel fibers decreased the strength in the specified cycles, while glass fibers showed a normal strength trend. The compressive, tensile and fracture toughness of the samples containing 1.5 vol.% fibers showed a 1.28-, 2.13- and 4.5-fold enhancement compared to samples without fibers, after 300 freezing-thawing cycles, respectively.

Keywords

Acknowledgement

The study in question was enabled with the support of Arak Islamic Azad University and Iran University of Science and Technology.

References

  1. Abdollahnejad, Z., Mastali, M., Falah, M., Mohammad Shaad, K., Luukkonen, T. and Illikainen, M. (2021), "Durability of the reinforced one-part alkali-activated slag mortars with different fibers", Waste Biomass Valoriz., 12(1), 487-501. https://doi.org/10.1007/s.12649-020-00958-x.
  2. Ahmad, J. and Zhou, Z. (2024), "Waste marble based self-compacting concrete reinforced with steel fiber exposed to aggressive environment", J. Build. Eng., 81, 108142. https://doi.org/10.1016/j.jobe.2023.108142.
  3. Aliha, M.R.M., Razmi, A. and Mousavi, A. (2018), "Fracture study of concrete composites with synthetic fibers additive under modes I and III using ENDB specimen", Constr. Build. Mater., 190, 612-622. https://doi.org/10.1016/j.conbuildmat.2018.09.149.
  4. Asli, S.A., Shokrieh, M.M. and Kamangar, M.A. (2021), "A comparison of destructive behaviors of distilled water, salty water, sulfuric acid and heat on glass/vinyl ester composites", Compos. Mater. Eng., 3(3), 167-178. https://doi.org/10.12989/cme.2021.3.3.167.
  5. ASTM C1240-14 (2012), Standard Specification for Silica Fume Used in Cementitious Mixtures, Annual Book of ASTM Standards, ASTM International.
  6. ASTM C143/C143M (2003), Standard Test Method for Slump of Hydraulic-Cement Concrete, ASTM International West Conshohocken.
  7. ASTM C150/C150M (2012), Standard Specification for Portland Cement, ASTM Committee I, 1-9.
  8. ASTM C192/C192M (2016), Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, American Society for Testing and Materials, 1-8.
  9. ASTM C33/C33M (2018), Standard Specification for Concrete Aggregates, ASTM International, 1-8.
  10. ASTM C39/C39M. (2021), Standard Test. Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, USA.
  11. ASTM C496 (2008), Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, Annual Book of ASTM Standards, ASTM International West Conshohocken, PA.
  12. ASTM C666/C666M (2003), Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing, ASTM International, West Conshohocken, PA.
  13. Bahmani, A., Aliha, M.R.M., Sarbijan, M.J. and Mousavi, S.S. (2020), "An extended edge-notched disc bend (ENDB) specimen for mixed-mode I+II fracture assessments", Int. J. Solid. Struct., 193, 239-250. https://doi.org/10.1016/j.ijsolstr.2020.02.017.
  14. Bidadi, J., Akbardoost, J. and Aliha, M.R.M. (2020), "Thickness effect on the mode III fracture resistance and fracture path of rock using ENDB specimens", Fatig. Fract. Eng. Mater. Struct., 43(2), 277-291. https://doi.org/10.1111/ffe.13121.
  15. Chen, Y., Waheed, M.S., Iqbal, S., Rizwan, M. and Room, S. (2024), "Durability properties of macro-polypropylene fiber reinforced self-compacting concrete", Mater., 17(2), 284. https://doi.org/10.3390/ma17020284.
  16. Deng, Y., Hao, Y., Zhang, C., Cao, Y. and Li, W. (2022), "Temperature and strain rate dependent tensile strength model for short fiber reinforced polymer composites", Compos. Mater. Eng., 4(1), 63-81. https://doi.org/10.12989/cme.2022.4.1.063.
  17. Eghbali, M.R., Tafti, M.F., Aliha, M.R.M. and Motamedi, H. (2019), "The effect of ENDB specimen geometry on mode i fracture toughness and fracture energy of HMA and SMA mixtures at low temperatures", Eng. Fract. Mech., 216, 106496. https://doi.org/10.1016/j.engfracmech.2019.106496.
  18. Esfahani, M.R., Rajabzade, M. and Ramezani, A. (1970), "Evaluation of hybrid fiber reinforced concrete subjected to freezing and thawing cycles using relative dynamic modulus of elasticity", Concrete Res., 12(2), 33-48.
  19. Guler, S., Akbulut, Z.F., Siad, H. and Lachemi, M. (2021), "Effect of macro polypropylene, polyamide and steel fibers on the residual properties of SCC at ambient and elevated temperatures", Constr. Build. Mater., 289, 123154. https://doi.org/10.1016/j.conbuildmat.2021.123154.
  20. Halvaeyfar, M.R., Zeighami, E., Mirhosseini, S.M. and Joshaghani, A.H. (2023), "Experimental and numerical study of the behavior of fiber reinforced concrete beams with nano-graphene oxide and strengthening CFRP sheets", Struct. Eng. Mech., 87(4), 375. https://doi.org/10.12989/sem.2023.87.4.375.
  21. Hamzah, H.K., Huseien, G.F., Asaad, M.A., Georgescu, D.P., Ghoshal, S.K. and Alrshoudi, F. (2021), "Effect of waste glass bottles-derived nanopowder as slag replacement on mortars with alkali activation: Durability characteristics", Case Stud. Constr. Mater., 15, e00775. https://doi.org/10.1016/j.cscm.2021.e00775.
  22. Ji, Y., Zou, Y., Ma, Y., Wang, H., Li, W. and Xu, W. (2022), "Frost resistance investigation of fiber-doped cementitious composites", Mater., 15(6), 2226. https://doi.org/10.3390/ma.15062226.
  23. Karimi, N. and Mostofinejad, D. (2020), "Bacillus subtilis bacteria used in fiber reinforced concrete and their effects on concrete penetrability", Constr. Build. Mater., 230, 117051. https://doi.org/10.1016/j.conbuildmat.2019.117051.
  24. Khan, M.U., Ahmad, S., Al-Osta, M.A., Algadhib, A.H. and Al-Gahtani, H.J. (2023), "Effect of fiber content on the performance of UHPC slabs under impact loading-experimental and analytical investigation", Adv. Concrete Constr., 15(3), 161-170. https://doi.org/10.12989/acc.2023.15.3.161.
  25. Kim, J., Moon, J.H., Shim, J.W., Sim, J., Lee, H.G. and Zi, G. (2014), "Durability properties of a concrete with waste glass sludge exposed to freeze-and-thaw condition and de-icing salt", Constr. Build. Mater., 66, 398-402. https://doi.org/10.1016/j.conbuildmat.2014.05.081.
  26. Koksal, F., Bacanli, C., Benli, A. and Gencel, O. (2022), "Fresh, flexural and mechanical performance of polyamide and polypropylene based macro-synthetic fiber-reinforced concretes", Struct. Eng. Mech., 82(1), 93-105. https://doi.org/10.12989/sem.2022.82.1.093.
  27. Latifi, M.R., Biricik, O. and Mardani Aghabaglou, A. (2022), "Effect of the addition of polypropylene fiber on concrete properties", J. Adhes. Sci. Technol., 36(4), 345-69. https://doi.org/10.1080/01694243.2021.1922221.
  28. Liu, C., Sun, J., Tang, X. and Ma, Y. (2024), "The durability of spray steel fiber-reinforced recycled coarse aggregate concrete", Constr. Build. Mater., 412, 134731. https://doi.org/10.1016/j.conbuildmat.2023.134731.
  29. Mohamed, O. and Zuaiter, H. (2024), "Fresh properties, strength, and durability of fiber-reinforced geopolymer and conventional concrete: A review", Polym., 16(1), 141. https://doi.org/10.3390/polym16010141.
  30. Motamedi, H., Fazaeli, H., Aliha, M.R.M. and Amiri, H.R. (2020), "Evaluation of temperature and loading rate effect on fracture toughness of fiber reinforced asphalt mixture using Edge Notched Disc Bend (ENDB) specimen", Constr. Build. Mater., 234, 117365. https://doi.org/10.1016/j.conbuildmat.2019.117365.
  31. Mousavi, S.R., Afshoon, I., Bayatpour, M.A., TQ, A.D. and Miri, M. (2021), "Effect of waste glass and curing aging on fracture toughness of self-compacting mortars using ENDB specimen", Constr. Build. Mater., 282, 122711. https://doi.org/10.1016/j.conbuildmat.2021.122711.
  32. Murali, G., Abid, S.R., Amran, M., Fediuk, R., Vatin, N. and Karelina, M. (2021), "Combined effect of multi-walled carbon nanotubes, steel fibre and glass fibre mesh on novel two-stage expanded clay aggregate concrete against impact loading", Crystal., 11(7), 720. https://doi.org/10.3390/cryst11070720.
  33. Naaman, A.E. (2003), "Engineered steel fibers with optimal properties for reinforcement of cement composites", J. Adv. Concrete Technol., 1(3), 241-52. https://doi.org/10.3151/jact.1.241.
  34. Nematzadeh, M., Hosseini, S.A. and Ozbakkaloglu, T. (2021), "The combined effect of crumb rubber aggregates and steel fibers on shear behavior of GFRP bar-reinforced high-strength concrete beams", J. Build. Eng., 44, 102981. https://doi.org/10.1016/j.jobe.2021.102981.
  35. Orouji, M., Zahrai, S.M. and Najaf, E. (2021), "Effect of glass powder & polypropylene fibers on compressive and flexural strengths, toughness and ductility of concrete: An environmental approach", Struct., 33, 4616-28. https://doi.org/10.1016/j.istruc.2021.07.048.
  36. Oz, A., Bayrak, B. and Aydin, A.C. (2021), "The effect of trio-fiber reinforcement on the properties of self-compacting fly ash concrete", Constr. Build. Mater., 274, 121825. https://doi.org/10.1016/j.conbuildmat.2020.121825.
  37. Parashar, A.K. and Gupta, A. (2021), "Investigation of the effect of bagasse ash, hooked steel fibers and glass fibers on the mechanical properties of concrete", Mater. Today: Proc., 44, 801-807. https://doi.org/10.1016/j.matpr.2020.10.711.
  38. Pour, P.H., Aliha, M.R.M. and Keymanesh, M.R. (2018), "Evaluating Mode I fracture resistance in asphalt mixtures using edge notched disc bend ENDB specimen with different geometrical and environmental conditions", Eng. Fract. Mech., 190, 245-58. https://doi.org/10.1016/j.engfracmech.2017.11.007.
  39. Raza, S.S., Qureshi, L.A., Ali, B., Raza, A. and Khan, M.M. (2021), "Effect of different fibers (steel fibers, glass fibers, and carbon fibers) on mechanical properties of reactive powder concrete", Struct. Concrete, 22(1), 334-346. https://doi.org/10.1002/suco.201900439.
  40. Richardson, A.E., Coventry, K.A. and Wilkinson, S. (2012), "Freeze/Thaw durability of concrete with synthetic fibre additions", Cold Reg. Sci. Technol., 83, 49-56. https://doi.org/10.1016/j.coldregions.2012.06.006.
  41. Sademomtazi, A. (2018), "Study of effect of freezing and thawing cycles on bonding between fiber-reinforced self-compacting concrete with different water to cementitious ratios and paste volume as a repair layer and concrete substrate", Modares Civil Eng. J., 18(3), 129-139.
  42. Sanjeewa, H.V.A.N. and Asamoto, S. (2024), "A review of mechanical properties of deteriorated concrete due to delayed ettringite formation and its influence on the structural behavior of reinforced concrete members", Constr. Build. Mater., 422, 135795. https://doi.org/10.1016/j.conbuildmat.2024.135795.
  43. Shahsavar, S., Fakoor, M. and Berto, F. (2021), "Mixed mode I/II fracture criterion to anticipate cracked composite materials based on a reinforced kinked crack along maximum shear stress path", Steel Compos. Struct., 39(6), 765-779. https://doi.org/10.12989/scs.2021.39.6.765.
  44. Song, S., Yu, H. and Ma, H. (2024), "Influence of drying conditions on the durability of concrete subjected to the combined action of chemical attack and freeze-thaw cycles", Mater., 17(5), 1131. https://doi.org/10.3390/ma17051131.
  45. Swamy, R.N. and Mangat, P.S. (1974), "Influence of fibre-aggregate interaction on some properties of steel fibre reinforced concrete", Materiaux et Construct., 7(5), 307-14. https://doi.org/10.1007/BF02473840.
  46. Usman, M., Gillani, S.A.A., Hameed, R., Riaz, M.R., Ilyas, M. and Deifalla, A.F. (2022), "Effect of crumb rubber and silica fume on the fresh, hardened and concrete-steel bond strength properties of SCC", Adv. Concrete Constr., 14(6), 427. https://doi.org/10.12989/acc.2022.14.6.427.
  47. Xu, P., Cui, Y., Han, D., Zhang, M. and Ding, Y. (2023), "Effect of activator types on cement mortar with polymeric aluminum chloride waste residue", Adv. Concrete Constr., 15(3), 149-159. https://doi.org/10.12989/acc.2023.15.3.149.
  48. Yogananda, M. and Suedep, Y.H. (2022), "Durability characteristics of reinforced concrete subjected to synthetic acid rain", 10(5), 56-59.
  49. Yu, J., Qiao, H., Zhu, F. and Wang, X. (2021), "Research on damage and deterioration of fiber concrete under acid rain environment based on Gm(1,1)-Markov", Mater., 14(21), 6326. https://doi.org/10.3390/ma.14216326.
  50. Yuan, X., Bai, H., Sun, C., Li, Q. and Song, Y. (2022), "Mechanical behaviour between adjacent cracks in CFRP plate reinforced RC slabs", Struct. Eng. Mech., 84(3), 375-391. https://doi.org/10.12989/sem.2022.84.3.375.
  51. Yuan, X., Zhang, L., Chen, X. and Liu, F. (2022), "Study on the mechanical properties and frost resistance of multiple modified concrete", Mater. Res. Expr., 9(4), 045013. https://doi.org/10.1088/2053-1591/ac.3951.
  52. Zarei, M., Abdi Kordani, A. and Zahedi, M. (2022), "Evaluating the fracture behaviour of modified Asphalt Concrete Composites (ACC) at low and intermediate temperatures using Edge Notched Disc Bend (ENDB) specimen", Road Mater. Pave. Des., 23(8), 1917-1941. https://doi.org/10.1080/14680629.2021.1950819.
  53. Zhang, Q., Xu, W., Sun, Y. and Ji, Y. (2022), "Investigation on mechanical and microstructure properties of steel fiber reinforced concrete", Adv. Mater. Sci. Eng., 2022, Article ID 3681132. https://doi.org/10.1155/2022/3681132.