• Title/Summary/Keyword: s-convex functions

Search Result 103, Processing Time 0.024 seconds

A New Explanation of Some Leiden Ranking Graphs Using Exponential Functions

  • Egghe, Leo
    • Journal of Information Science Theory and Practice
    • /
    • v.1 no.3
    • /
    • pp.6-11
    • /
    • 2013
  • A new explanation, using exponential functions, is given for the S-shaped functional relation between the mean citation score and the proportion of top 10% (and other percentages) publications for the 500 Leiden Ranking universities. With this new model we again obtain an explanation for the concave or convex relation between the proportion of top $100{\theta}%$ publications, for different fractions of ${\theta}$.

NEW SUBCLASS OF MEROMORPHIC MULTIVALENT FUNCTIONS ASSOCIATED WITH HYPERGEOMETRIC FUNCTION

  • Khadr, Mohamed A.;Ali, Ahmed M.;Ghanim, F.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.3
    • /
    • pp.553-563
    • /
    • 2021
  • As hypergeometric meromorphic multivalent functions of the form $$L^{t,{\rho}}_{{\varpi},{\sigma}}f(\zeta)=\frac{1}{{\zeta}^{\rho}}+{\sum\limits_{{\kappa}=0}^{\infty}}{\frac{(\varpi)_{{\kappa}+2}}{{(\sigma)_{{\kappa}+2}}}}\;{\cdot}\;{\frac{({\rho}-({\kappa}+2{\rho})t)}{{\rho}}}{\alpha}_{\kappa}+_{\rho}{\zeta}^{{\kappa}+{\rho}}$$ contains a new subclass in the punctured unit disk ${\sum_{{\varpi},{\sigma}}^{S,D}}(t,{\kappa},{\rho})$ for -1 ≤ D < S ≤ 1, this paper aims to determine sufficient conditions, distortion properties and radii of starlikeness and convexity for functions in the subclass $L^{t,{\rho}}_{{\varpi},{\sigma}}f(\zeta)$.

ON SUBCLASSES OF UNIVALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS

  • Owa, Shigeyoshi;Aouf, M.K.
    • East Asian mathematical journal
    • /
    • v.4
    • /
    • pp.57-73
    • /
    • 1988
  • The subclasses S*($\alpha,\beta,\mu$) and C*($\alpha,\beta,\mu$) ($0\leqq\alpha<1,\;0<\beta\leqq1$ and $0\leqq\mu\leqq1$) of T the class of analytic and univalent functions of the form $$f(z)=z-\sum\limit^{\infty}_{n=2}\mid a_n\mid z^n$$ have been considered. Sharp results concerning coefficients, distortion of functions belonging to S*($\alpha,\beta,\mu$) and C*($\alpha,\beta,\mu$) are determined along with a representation formula for the functions in S*($\alpha,\beta,\mu$). Furthermore, it is shown that the classes S*($\alpha,\beta,\mu$) and C*($\alpha,\beta,\mu$) are closed under arithmetic mean and convex linear combinations. Also in this paper, we find extreme points and support points for these classes.

  • PDF

A GENERALIZED CLASS OF HARMONIC UNIVALENT FUNCTIONS ASSOCIATED WITH AL-OBOUDI OPERATOR INVOLVING CONVOLUTION

  • Sangle, N.D.;Metkari, A.N.;Joshi, S.B.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.5
    • /
    • pp.887-902
    • /
    • 2021
  • In this paper, we have introduced a generalized class SiH (m, n, 𝛾, 𝜙, 𝜓; 𝛼), i ∈ {0, 1} of harmonic univalent functions in unit disc 𝕌, a sufficient coefficient condition for the normalized harmonic function in this class is obtained. It is also shown that this coefficient condition is necessary for its subclass 𝒯 SiH (m, n, 𝛾, 𝜙, 𝜓; 𝛼). We further obtained extreme points, bounds and a covering result for the class 𝒯 SiH (m, n, 𝛾, 𝜙, 𝜓; 𝛼). Also, show that this class is closed under convolution and convex combination. While proving our results, certain conditions related to the coefficients of 𝜙 and 𝜓 are considered, which lead to various well-known results.

BOUNDS FOR RADII OF CONVEXITY OF SOME q-BESSEL FUNCTIONS

  • Aktas, Ibrahim;Orhan, Halit
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.2
    • /
    • pp.355-369
    • /
    • 2020
  • In the present investigation, by applying two different normalizations of the Jackson's second and third q-Bessel functions tight lower and upper bounds for the radii of convexity of the same functions are obtained. In addition, it was shown that these radii obtained are solutions of some transcendental equations. The known Euler-Rayleigh inequalities are intensively used in the proof of main results. Also, the Laguerre-Pólya class of real entire functions plays an important role in this work.

A TWO-FUNCTION MINIMAX THEOREM

  • Kim, Won Kyu;Kum, Sangho
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.3
    • /
    • pp.321-326
    • /
    • 2008
  • In this note, using the separation theorem for convex sets, we will give a two functions version generalization of Fan's minimax theorem by relaxing the convexlike assumption to the weak convexlike condition.

  • PDF

A STUDY ON MILNE-TYPE INEQUALITIES FOR A SPECIFIC FRACTIONAL INTEGRAL OPERATOR WITH APPLICATIONS

  • Arslan Munir;Ather Qayyum;Laxmi Rathour;Gulnaz Atta;Siti Suzlin Supadi;Usman Ali
    • Korean Journal of Mathematics
    • /
    • v.32 no.2
    • /
    • pp.297-314
    • /
    • 2024
  • Fractional integral operators have been studied extensively in the last few decades by various mathematicians, because it plays a vital role in the developments of new inequalities. The main goal of the current study is to establish some new Milne-type inequalities by using the special type of fractional integral operator i.e Caputo Fabrizio operator. Additionally, generalization of these developed Milne-type inequalities for s-convex function are also given. Furthermore, applications to some special means, quadrature formula, and q-digamma functions are presented.