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ON AN INEQUALITY BY ANDRICA AND RAŞA AND ITS
APPLICATION FOR THE SHANNON AND RÉNYI’S ENTROPY

S. S. DRAGOMIR, J. ŠUNDE AND J. ASENSTORFER

Abstract. Applications of a result by Andrica and Raşa involving twice differen-
tiable mappings for Shannon’s and Rényi’s entropy are given.

1. Introduction

The following converse of Jensen’s discrete inequality for convex mappings of a real
variable was proved in 1994 by Dragomir and Ionescu in [2].

Theorem 1. Let f : I ⊆ R→ R be a differentiable convex function on the interval I,
xi ∈̊I (̊I is the interior of I), pi ≥ 0 (i = 1, ..., n) and

∑n
i=1 pi = 1. Then we have the

inequality:

0 ≤
n∑

i=1

pif (xi)− f

(
n∑

i=1

pixi

)
(1.1)

≤
n∑

i=1

pixif
′ (xi)−

n∑

i=1

pixi

n∑

j=1

pjf
′ (xj) .

It also pointed out some natural applications of (1.1) in connection to the arithmetic
mean-geometric mean inequality, the generalized triangle inequality, etc...

For other results in connection to Jensen’s inequality for convex functions see for
example the book [1] and the Ph.D. Dissertation [6].

A generalization of (1.1) for differentiable convex mappings of several variables was
obtained in 1996 by Dragomir and Goh [3]. They also considered the following analytic
inequality for the logarithmic map logb (·) .

1991 Mathematics Subject Classification. 26D15, 94 Xxx.
Key words and phrases. Convex functions, Jensen’s Inequality, Shannon’s Entropy, Rényi’s entropy.
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Theorem 2. Let ξi, pi > 0 (i = 1, ..., n) with
∑n

i=1 pi = 1 and b > 1. Then

0 ≤ logb

(
n∑

i=1

piξi

)
−

n∑

i=1

pi logb ξi(1.2)

≤ 1
ln b




n∑

i=1

pi

ξi

n∑

j=1

pjξj − 1




=
1

ln b

n∑

1≤i<j≤n

pipj

(
ξi − ξj

)2

ξiξj

.

Equality holds in (1.2) if and only if ξ1 = ... = ξn.

They also applied inequality (1.2) to Information Theory for the entropy mapping,
conditional entropy, mutual information, conditional mutual information, etc...

An integral version of (1.2) was employed by Dragomir and Goh in [11] to obtain
new bounds for the entropy, conditional entropy and mutual information of continuous
random variables. In addition, some applications of an integral counterpart of Jensen’s
inequality in Torsion Theory were done by Dragomir and Keady in 1996 [9].

For recent generalizations, for both the discrete case and the continuous case, as
well as extensions for mappings defined on normed linear spaces, see M. Matić’s Ph.D.
Dissertation [6], where further applications in Information Theory are given.

2. Some Analytic Inequalities

We use the following result due to Andrica and Raşa [10].

Theorem 3. Let f : [a, b] → R be twice differentiable on (a, b) and m ≤ f ′′ (x) ≤ M
for all x ∈ (a, b) . If xi ∈ (a, b)

(
i = 1, n

)
and p = (pi)i=1,n is a probability distribution,

then

m

4

n∑

i,j=1

pipj (xi − xj)
2(2.1)

≤
n∑

i=1

pif (xi)− f

(
n∑

i=1

pixi

)

≤ M

4

n∑

i,j=1

pipj (xi − xj)
2 .

For the sake of completeness, we present here a short proof of this result.
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Proof. Consider the mapping g : [a, b] → R, g (x) = f (x) − 1
2mx2. Then g is twice

differentiable on (a, b) and

g′ (x) = f ′ (x)−mx, x ∈ (a, b) ;
g′′ (x) = f ′′ (x)−m, x ∈ (a, b) ,

which shows that the mapping g is convex on [a, b] .
Apply Jensen’s discrete inequality for the convex mapping g, i.e.,

g

(
n∑

i=1

pixi

)
≤

n∑

i=1

pig (xi) ,

to obtain

f

(
n∑

i=1

pixi

)
− 1

2
m

(
n∑

i=1

pixi

)2

≤
n∑

i=1

pi

[
f (xi)− 1

2
mx2

i

]

=
n∑

i=1

pif (xi)− 1
2
m

n∑

i=1

pix
2
i ,

which is equivalent to
n∑

i=1

pif (xi)− f

(
n∑

i=1

pixi

)

≥ 1
2
m




n∑

i=1

pix
2
i −

(
n∑

i=1

pixi

)2



=
1
4
m

n∑

i,j=1

pipj (xi − xj)
2

and the first inequality in (2.1) is proved.
The proof of the second inequality goes likewise for the mapping h : [a, b] → R,

h (x) = 1
2Mx2 − f (x) which is convex on [a, b] . We omit the details.

Now, consider the means:
1) The weighted arithmetic mean An (w, a)

An (w, a) :=
1

Wn

n∑

i=1

wiai,

where Wn =
∑n

i=1 wi.



34 S. S. DRAGOMIR, J. ŠUNDE AND J. ASENSTORFER

2) The weighted geometric mean Gn (w, a)

Gn (w, a) :=

(
n∏

i=1

awi
i

) 1
Wn

and
3) The weighted harmonic mean Hn (w, a)

Hn (w, a) =
Wn∑n
i=1

wi
ai

,

where ai, wi > 0 (i = 1, ..., n) .
The following inequality is well known in the literature as the arithmetic mean-

geometric mean-harmonic mean inequality

(2.2) An (w, a) ≥ Gn (w, a) ≥ Hn (w, a) .

The equality holds in (2.2) if and only if a1 = ... = an.
The following corollary holds.

Corollary 1. Let ai, wi > 0 (i = 1, ..., n) . If 0 < m ≤ ai ≤ M < ∞ (i = 1, ..., n) , then
we have the inequalities:

1 ≤ exp


 1

4M2
· 1
W 2

n

n∑

i,j=1

wiwj (ai − aj)
2


(2.3)

≤ An (w, a)
Gn (w, a)

≤ exp


 1

4m2
· 1
W 2

n

n∑

i,j=1

wiwj (ai − aj)
2




and

1 ≤ exp


1

4
m2 · 1

W 2
n

n∑

i,j=1

wiwj (ai − aj)
2

a2
i a

2
j


(2.4)

≤ Gn (w, a)
Hn (w, a)

≤ exp


1

4
M2 · 1

W 2
n

n∑

i,j=1

wiwj (ai − aj)
2

a2
i a

2
j


 .

Equality holds in both (2.3) and (2.4) if and only if a1 = ... = an.
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Proof. The proof follows by Theorem 3, choosing f (x) = − ln x. For this mapping
we have f ′′ (x) = 1

x2 ∈
[

1
M2 , 1

m2

]
, and if we assume that pi = wi

Wn
, xi = ai, then, by

Theorem 3, we deduce (2.3).
The inequality (2.4) follows by (2.3) applied for 1

ai
instead of ai (i = 1, ..., n) . We

omit the details.

3. Applications for the Shannon’s Entropy

Let X be a discrete random variable with the range R = {x1, ..., xn} and the proba-
bility distribution p1, ..., pn (pi > 0, i = 1, ..., n) . Define the Shannon entropy mapping

H (X) := −
n∑

i=1

pi ln pi.

The following theorem is well known in the literature and concerns the maximum
possible value of H (X) in terms of the size of R [4, p. 27].

Theorem 4. Let X be defined as above. Then

0 ≤ H (X) ≤ lnn.

Furthermore, H (X) = lnn if and only if pi = 1
n for all i ∈ {1, ..., n} .

In a recent paper [3], Dragomir and Goh proved the following counterpart result.

Theorem 5. Let X be defined as above. Then

(3.1) 0 ≤ lnn−H (X) ≤
∑

1≤i<j≤n

(pi − pj)
2 .

Equality holds in both inequalities simultaneously if and only if pi = 1
n for all i ∈

{1, ..., n} .

We wish to point out that equation (3.1) is not new, but it is rather a special case of
the inequality upperbounding the Kullback-Liebler divergence by the χ2-divergence:

∑

i

pi log
pi

qi
≤

∑

i

(qi − pi)
2

qi
,

corresponding to the case when q is the uniform distribution. This inequality can be
found in [12] where authors derived the inequality for evaluating the expected length
of codewords of an arithmetic coding.

Before we point out another result for the entropy mapping, let us consider the
following analytic inequality for the logarithmic mapping.
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Lemma 1. Let ξi ∈ [m,M ] ⊂ (0,∞) , pi > 0 (i = 1, ..., n) with
∑n

i=1 pi = 1. Then

0 ≤ 1
4M2

n∑

i,j=1

pipj

(
ξi − ξj

)2(3.2)

≤ ln

(
n∑

i=1

piξi

)
−

n∑

i=1

pi ln ξi

≤ 1
4m2

n∑

i,j=1

pipj

(
ξi − ξj

)2
.

Equality holds in all inequalities simultaneously if and only if ξ1 = ... = ξn.

The proof is obvious by (2.1) for the mapping f : (0,∞) → R, f (x) = − ln x.
The following theorem provides an estimation (a lower bound and an upper bound)

for the distance between H (X) and its maximum lnn.

Theorem 6. Let X be as above. Define

0 < p := min {pi|i = 1, ..., n} ,(3.3)
P : = max {pi|i = 1, ..., n} < 1.

Then we have the inequality

0 ≤ 1
2
p2

∑

1≤i<j≤n

(pi − pj)
pipj

2

(3.4)

=
1
4
p2

n∑

i,j=1

(pi − pj)
pipj

2

≤ ln n−H (X)

≤ 1
4
P 2

n∑

i,j=1

(pi − pj)
pipj

2

=
1
2
P 2

∑

1≤i<j≤n

(pi − pj)
pipj

2

.

Equality holds in all inequalities simultaneously if and only if pi = 1
n for all i ∈

{1, ..., n} .

Proof. Choose in (3.2) ξi = 1
pi
∈

[
1
P , 1

p

]
(by the condition in (3.3)). A simple calculation

gives the desired inequality (3.4).
The case of equality is also obvious.

The following corollary also holds.



ON AN INEQUALITY BY ANDRICA AND RAŞA AND ITS APPLICATION 37

Corollary 2. Let X be as in Theorem 6 and ε > 0. If

(3.5) 1 + k −
√

k (k + 2) ≤ pi

pj
≤ 1 + k +

√
k (k + 2)

for 1 ≤ i < j ≤ n, where

k :=
2ε

P 2n (n− 1)
(n ≥ 2) ,

then we have the bound

(3.6) 0 ≤ lnn−H (X) ≤ ε.

Proof. Consider the following inequality in R

(l − t)2

2lt
≤ k, l, t > 0,

which is equivalent to
l2 − 2 (1 + k) lt + t2 ≤ 0, l, t > 0

i.e.,

s2 − 2 (1 + k) s + 1 ≤ 0, s =
l

t
or

1 + k −
√

k (k + 2) ≤ s ≤ 1 + k +
√

k (k + 2).
Consequently, we can assert that

1 + k −
√

k (k + 2) ≤ pi

pj
≤ 1 + k +

√
k (k + 2)

for 1 ≤ i < j ≤ n, if and only if

(pi − pj)
2pipj

2

≤ k, 1 ≤ i < j ≤ n.

Now, if (3.5) holds, then, by the second inequality in (3.4), we have

lnn−H (X) ≤ 1
4
P 2

n∑

i,j=1

(pi − pj)
pipj

2

=
1
2
P 2

∑

1≤i<j≤n

(pi − pj)
pipj

2

= P 2k · n (n− 1)
2

= P 2 · n (n− 1)
2

· 2ε

P 2n (n− 1)
= ε

and the estimation (3.6) is obtained.
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The following corollary provides a sufficient condition for the probability distribution
pi such that lnn−H (X) ≥ µ > 0 (µ is small enough).

Corollary 3. Let X be as in Theorem 6 and ε > 0 (ε is small enough ). If

(3.7)
pi

pj
≤ 1 + µ−

√
µ (µ + 2) for 1 ≤ i < j ≤ n

or

(3.8)
pi

pj
≥ 1 + µ +

√
µ (µ + 2) for 1 ≤ i < j ≤ n,

where
µ =

2ε

p2n (n− 1)
,

then

(3.9) lnn−H (X) ≥ ε > 0.

Proof. The elementary inequality in R

(l − t)2

2lt
≥ µ, l, t > 0,

is equivalent to

s ≤ 1 + µ−
√

µ (µ + 2)

or s ≥ 1 + µ +
√

µ (µ + 2), s =
l

t
.

Consequently, if either (3.7) or (3.8) hold, then

(pi − pj)
2pipj

2

≥ µ, for all 1 ≤ i < j ≤ n.

Using the first inequality in (3.4), we obtain

lnn−H (X) ≥ 1
4
p2

n∑

i,j=1

(pi − pj)
2

pipj

=
1
2
p2

∑

1≤i<j≤n

(pi − pj)
2

pipj

≥ p2µ · n (n− 1)
2

= p2 · n (n− 1)
2

· 2ε

p2n (n− 1)
= ε

and the estimation (3.9) is obtained.



ON AN INEQUALITY BY ANDRICA AND RAŞA AND ITS APPLICATION 39

4. Applications for the Rényi α−Entropy

Define the Rényi α−Entropy α ∈ ((0, 1) ∪ (1,∞)) by [8]

Hα (X) :=
1

1− α
ln

(
n∑

i=1

pα
i

)
.

Consider the classical Jensen’s discrete inequality for convex mappings, i.e.,

(4.1) f

(
n∑

i=1

pixi

)
≤

n∑

i=1

pif (xi) ,

where f : I ⊆ R→ R is a convex mapping on I, xi ∈ I (i = 1, ..., n) and (pi)i=1,...,n is
a probability distribution. For the convex mapping f (x) = − ln x in (4.1), we obtain

(4.2) ln

(
n∑

i=1

pixi

)
≥

n∑

i=1

pi lnxi.

If we choose xi := pα−1
i (i = 1, ..., n) in (4.2), we obtain

ln

(
n∑

i=1

pα
i

)
≥ (α− 1)

n∑

i=1

pi ln pi,

which is equivalent to

(4.3) (1− α) [Hα (X)−H (X)] ≥ 0.

Now, if α ∈ (0, 1) , then Hα (X) ≥ H (X) and if α > 1 then Hα (X) ≤ H (X) . Equality
holds iff (pi)i=1,...,n is a uniform distribution and this fact follows by the strict convexity
of − ln (·) .

The following theorem, which is an improvement on the inequality (4.3), holds.

Theorem 7. Let X be a random variable having the probability distribution pi (i = 1, ..., n)
and assume that

0 < p := min {pi|i = 1, ..., n} ,

P : = max {pi|i = 1, ..., n} < 1.

If α ∈ (0, 1), then we have the inequality

1
4
p2(1−α)

n∑

i,j=1

pipj

(
pα−1

i − pα−1
j

)2
(4.4)

≤ (1− α) [Hα (X)−H (X)]

≤ 1
4
P 2(1−α)

n∑

i,j=1

pipj

(
pα−1

i − pα−1
j

)2
.

or on the other side, if α ∈ (1,∞) , then the inequality is reversed.
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Proof. We use Lemma 1 for ξi := pα−1
i (i = 1, ..., n) .

If α ∈ (0, 1) , then
inf

i=1,...,n
ξi = Pα−1, sup

i=1,...,n
ξi = pα−1

and then, from (3.2), we can state that

1
4
· 1
p2(α−1)

n∑

i,j=1

pipj

(
pα−1

i − pα−1
j

)2

≤ ln

(
n∑

i=1

pα
i

)
− (α− 1)

n∑

i=1

pi ln pi

≤ 1
4
· 1
P 2(α−1)

n∑

i,j=1

pipj

(
pα−1

i − pα−1
j

)2

and the inequality (4.4) is proved.
If α ∈ (1,∞) , then

inf
i=1,...,n

ξi = pα−1, sup
i=1,...,n

ξi = Pα−1

and the rest of the process is similar.

Now, if we assume that pi = 1
n in (3.2), then we get the inequality

1
4n2M2

n∑

i,j=1

(
ξi − ξj

)2(4.5)

≤ ln

(
1
n

n∑

i=1

ξi

)
− 1

n

n∑

i=1

ln ξi

≤ 1
4n2m2

n∑

i,j=1

(
ξi − ξj

)2
,

provided that ξi ∈ [m, M ] ⊂ (0,∞) , i = 1, ..., n and Gn (p) := (
∏n

i=1 pi)
1
n .

Using (4.5), we can state and prove the following inequality as well.

Theorem 8. Let X and p be as in Theorem 7. Then we have the inequality:

1
4n2P 2α

n∑

i,j=1

(
pα

i − pα
j

)2(4.6)

≤ (1− α) Hα (X)− ln n− α ln Gn (p)

≤ 1
4n2p2α

n∑

i,j=1

(
pα

i − pα
j

)2
.
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Proof. Let ξi := pα
i , i = 1, ..., n. Then

inf
i=1,...,n

ξi = pα, sup
i=1,...,n

ξi = Pα

and so, from (4.5), we can state that:

1
4n2P 2α

n∑

i,j=1

(
pα

i − pα
j

)2

≤ (1− α) Hα (X)− ln n− α ln Gn (p)

≤ 1
4n2p2α

n∑

i,j=1

(
pα

i − pα
j

)2

and the inequality (4.6) is obtained.

5. Conclusion

The paper provides useful bounds for estimating Shannon and Rényi entropy. Rényi
entropy has recently received greater popularity for estimating the average length of
uniquely decodable source code codewords. If the cost of representing the codeword is
linear with length, Shannon entropy is suitable, but if the cost is exponential in length,
perhaps due to the cost of buffer overflows with long words, the Rényi entropy sub-
sumes the role of Shannon entropy. Rényi entropy has also been utilised to great effect
in modelling the computational complexity model of partial information available to a
cryptanalyst and consequently in determining the ”effective key length” in cryptosys-
tems under guessing attacks. It is also known that Rényi entropy is closely related to
the large deviations performance of guessers in guessing attacks. This paper conveys
some new bounds that support the application of Rényi entropy to these important
areas.
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