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A TWO-FUNCTION MINIMAX THEOREM

Won Kyu Kim* and Sangho Kum**

Abstract. In this note, using the separation theorem for convex
sets, we will give a two functions version generalization of Fan’s min-
imax theorem by relaxing the convexlike assumption to the weak
convexlike condition.

1. Introduction

In 1928, von Neumann found his celebrated minimax theorem [8] and,
since then, several extensions of von Neumann’s minimax theorem were
established. Among them, in 1952, Kneser [5] proved the generalization
of von Neumann’s minimax theorem by weakening the compactness, lin-
earity and continuity assumptions, and it has been very useful in many
applications in convex analysis and the theory of games. In 1953, Fan [2]
proved the abstract minimax theorem using general convexity assump-
tions on f without assuming the linear structures on X and Y . Till
now, there have been numerous minimax theorems in abstract settings
and two functions version of minimax theorems which generalize von
Neumann’s minimax theorem, e.g., see [1-7].

In this note, using the weak convexlike condition in [4], we will give a
two functions version minimax theorem which generalizes Fan’s minimax
theorem by applying the separation theorem for convex sets. Next we
give an example which the previous minimax theorems in [1-6] can not
be applied but is suitable for our theorem.
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2. Preliminaries

Let X be a non-empty convex subset of a vector space E and let
f : X → R. We say that f is quasi-convex if for each t ∈ R, {x ∈
X | f(x) ≤ t} is convex; and that f is quasi-concave if −f is quasi-
convex. When X and Y are any non-empty sets without linear struc-
tures, recall that f : X × Y → R is convexlike [2] on X if for any
x1, x2 ∈ X and λ ∈ [0, 1], there exists an x0 ∈ X such that

f(x0, y) ≤ λf(x1, y) + (1− λ)f(x2, y) for all y ∈ Y ;

and that f is concavelike if −f is convexlike.

In [4], the authors introduce the weak convexlike condition which
relax the convexlike condition into a finite subset of Y as follows:

Definition 2.1. Let X and Y be any non-empty sets and f : X ×
Y → R be a real-valued function on X × Y . Then f is called weak
convexlike on X if for every n ≥ 2, whenever {x1, · · · , xn} ⊆ X is
given and for any finite subset {y1, · · · , ym} of Y and λi ∈ [0, 1], i =
1, . . . , n, with

∑n
i=1 λi = 1, there exists a point x0 ∈ X such that

f(x0, y) ≤ λ1f(x1, y) + · · ·+ λnf(xn, y) for all y ∈ {y1, . . . , ym};

and that f is weak concavelike on X if −f is weak convexlike on X.

In the Definition, if Y is a finite set, then the weak convexlike condi-
tion is actually the same as the convexlike condition due to Fan [2].

3. A two-function minimax theorem

Using the separation theorem for convex sets, we now prove a two-
function minimax theorem which generalizes Fan’s minimax theorem by
relaxing the concavelike condition as follows:

Theorem 3.1. Let X be a non-empty compact topological space,
and Y be a non-empty discrete set. Let f, g : X × Y → R be two
functions satisfying the following conditions:

(1) f(x, y) ≥ g(x, y) for all (x, y) ∈ X × Y ;

(2) for each y ∈ Y , the function x 7→ g(x, y) is lower semicontinuous
and weak convexlike on X;

(3) for each x ∈ X, the function y 7→ f(x, y) is concavelike on Y .
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Then we have

inf
x∈X

sup
y∈Y

g(x, y) ≤ sup
y∈Y

min
x∈X

f(x, y).

Proof. First, we shall prove that one of the following holds:
(I) there exists x̄ ∈ X such that g(x̄, y) ≤ 0 for all y ∈ Y ;
(II) there exists ȳ ∈ Y such that f(x, ȳ) ≥ 0 for all x ∈ X.
Suppose (I) were false. Then for each x ∈ X, there exists y ∈ Y

such that g(x, y) > 0. Since x 7→ g(x, y) is lower semicontinuous, the set
Uy := {x ∈ X | g(x, y) > 0} is open for each y ∈ Y . Since X is compact
and X ⊆ ∪y∈Y Uy, there exists a finite subset {y1, · · · , yn} ⊂ Y such that
X ⊆ ∪n

i=1Uyi . Therefore, for each x ∈ X, there exists j ∈ {1, · · · , n}
with x ∈ Uyj . Hence, we have

max
1≤i≤n

g(x, yi) > 0 for each x ∈ X.

Now, we let

C1 := co{
(
g(x, y1), · · · , g(x, yn)

)
∈ Rn | x ∈ X};

C2 := {(z1, · · · , zn) ∈ Rn | zi < 0, i = 1, · · · , n}.
Then, it is clear that C1 is a non-empty convex subset of Rn, and C2 is
a non-empty open convex subset of Rn. Now we claim that C1∩C2 = ∅.
Indeed, suppose that there exists (z1, · · · , zn) ∈ C1 ∩ C2. Then, there
exist {x1, · · · , xk} ⊂ X and λi ∈ (0, 1), i = 1, . . . , k, with

∑k
i=1 λi = 1,

such that

(z1, · · · , zn) =
( k∑

j=1

λjg(xj , y1), · · · ,

k∑
j=1

λjg(xj , yn)
)
.

Since x 7→ g(x, y) is weak convexlike, for the given sets {x1, · · · , xk} and
{y1, · · · , yn}, and given λj ∈ (0, 1), j = 1, . . . , k, with

∑k
j=1 λj = 1,

there exists x0 ∈ X such that
k∑

j=1

λjg(xj , y) ≥ g(x0, y) for all y ∈ {y1, · · · , yn}.

Therefore, for each i ∈ {1, . . . , n}, we have

0 > zi =
k∑

j=1

λjg(xj , yi) ≥ g(x0, yi).

Since x0 ∈ Uyj for some j ∈ {1, · · · , n}, we must have g(x0, yj) > 0
which is a contradiction. Therefore, C1 ∩ C2 = ∅. By the separation
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theorem for convex sets, there exists (u1, · · · , un) ∈ Rn \ {O} such that
for all x ∈ X and for all (z1, · · · , zn) ∈ C2,

n∑
i=1

ui · g(x, yi) >

n∑
i=1

ui · zi.

If we let zi → −∞, we have ui ≥ 0 for each i ∈ {1, · · · , n}. Therefore,
we may assume that ui ∈ [0, 1], i = 1, . . . , n, with

∑n
i=1 ui = 1. For any

ε > 0, if we choose (z1, · · · , zn) = (−ε, · · · ,−ε) ∈ C2, then
∑n

i=1 ui ·zi =
−ε so that

∑n
i=1 ui · g(x, yi) > −ε. Since ε > 0 is arbitrary, we have∑n

i=1 ui ·g(x, yi) ≥ 0 for all x ∈ X. By the assumption (3), the function
y 7→ f(x, y) is concavelike on Y so that there exists a point y0 ∈ Y such
that f(x, y0) ≥

∑n
i=1 ui · f(x, yi) for all x ∈ X. Therefore, by the

assumption (1),

f(x, y0) ≥
n∑

i=1

ui · f(x, yi) ≥
n∑

i=1

ui · g(x, yi) ≥ 0 for all x ∈ X,

which proves (II). Now, we shall prove the main inequality. If we
suppose infx∈X supy∈Y g(x, y) = −∞, then the conclusion holds since

−∞ = inf
x∈X

sup
y∈Y

g(x, y) ≤ sup
y∈Y

min
x∈X

f(x, y).

Next, for any constant c ∈ R, we can repeat the previous argument to
the two functions f(x, y) − c and g(x, y) − c. If (I) holds, then there
exists x̄ ∈ X such that supy∈Y g(x̄, y) ≤ c so that we have

inf
x∈X

sup
y∈Y

g(x, y) ≤ c. (†)

On the other hand, if (II) holds, then there exists ȳ ∈ Y such that
minx∈X f(x, ȳ) ≥ c so that we have

sup
y∈Y

min
x∈X

f(x, y) ≥ c. (‡)

For any ε > 0, if we choose c := supy∈Y minx∈X f(x, y) + ε, then the
inequality (‡) can not be true so that, from (†), we can obtain that

inf
x∈X

sup
y∈Y

g(x, y) ≤ sup
y∈Y

min
x∈X

f(x, y) + ε.

Since ε > 0 is arbitrary, we have

inf
x∈X

sup
y∈Y

g(x, y) ≤ sup
y∈Y

min
x∈X

f(x, y),

which completes the proof.
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Remark 3.2. When f = g, we can obtain a generalization of Fan’s
minimax theorem in [2] by relaxing the convexlike condition to the weak
convexlike condition.

Next, we give an example where Theorem 3.1 can be applied but the
previous minimax theorems due to von Neumann, Nikaido, Kneser are
not available.

Example 3.3. Let X := [0, 1] and Y := (0, 3] be convex sets and
the function f, g : X × Y → R be defined by

f(x, y) :=

{
0, if

√
x ≤ y ≤ x + 1, (x, y) ∈ X × Y ;

1, otherwise.

g(x, y) :=
{ 0, if x ≤ y ≤ 2, (x, y) ∈ X × Y ;

1, otherwise.
Then, f(x, y) ≥ g(x, y) for all (x, y) ∈ X ×Y . For each y ∈ Y , it is easy
to see that x 7→ g(x, y) is lower semicontinuous and quasi-convex and
convexlike on X. Indeed, for any x1, x2 ∈ X and each λ ∈ [0, 1], there
exists an x0 = 0 ∈ X such that

g(0, y) ≤ λg(x1, y) + (1− λ)g(x2, y) for each y ∈ Y

so that x 7→ g(x, y) is convexlike on X. And, for each x ∈ X, y 7→ f(x, y)
is concavelike but not quasi-concave on Y . Indeed, we can see that for
any y1, y2 ∈ Y and each λ ∈ [0, 1], there exists an yo = 3 ∈ Y such that

1 = f(x, 3) ≥ λf(x, y1) + (1− λ)f(x, y2) for each x ∈ X;

and the set {y ∈ Y | f(1
2 , y) ≥ 1

2} = (0, 1√
2
) ∪ (3

2 , 3] is not convex in
Y . Therefore, all the hypotheses of Theorem 3.1 are satisfied so that we
have

1 = inf
x∈X

sup
y∈Y

g(x, y) ≤ sup
y∈Y

min
x∈X

f(x, y) = 1.

Note that since the domain of f is not compact and the map y 7→
f(x, y) is not quasi-concave on Y , the previous minimax theorems due
in [2,3,5-8] can not be applied for this function f .
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