• Title/Summary/Keyword: ruthenium(Ru) nanoparticles

Search Result 11, Processing Time 0.027 seconds

Fabrication of Ru Nanoparticles Decorated Porous Carbon Nanofibers for Electrochemical Capacitors (Electrochemical capacitor를 위한 Ru 나노입자가 담지 된 다공성 탄소 나노섬유의 제조)

  • Lee, Yu-Jin;An, Geon-Hyoung;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.24 no.1
    • /
    • pp.37-42
    • /
    • 2014
  • Well-distributed ruthenium (Ru) nanoparticles decorated on porous carbon nanofibers (CNFs) were synthesized using an electrospinning method and a reduction method for use in high-performance elctrochemical capacitors. The formation mechanisms including structural, morphological, and chemical bonding properties are demonstrated by means of field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). To investigate the optimum amount of the Ru nanoparticles decorated on the porous CNFs, we controlled three different weight ratios (0 wt%, 20 wt%, and 40 wt%) of the Ru nanoparticles on the porous CNFs. For the case of 20 wt% Ru nanoparticles decorated on the porous CNFs, TEM results indicate that the Ru nanoparticles with ~2-4 nm size are uniformly distributed on the porous CNFs. In addition, 40 wt% Ru nanoparticles decorated on the porous CNFs exhibit agglomerated Ru nanoparticles, which causes low performance of electrodes in electrochemical capacitors. Thus, proper distribution of 20 wt% Ru nanoparticles decorated on the porous CNFs presents superior specific capacitance (~280.5 F/g at 10 mV/s) as compared to the 40 wt% Ru nanoparticles decorated on the porous CNFs and the only porous CNFs. This enhancement can be attributed to the synergistic effects of well-distributed Ru nanoparticles and porous CNF supports having high surface area.

Synthesis and Catalytic Applications of Ruthenium(0) Nanoparticles in Click Chemistry

  • Kumar, Avvaru Praveen;Baek, Min-Wook;Sridhar, Chirumarry;Kumar, Begari Prem;Lee, Yong-Ill
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1144-1148
    • /
    • 2014
  • Here we report a facile synthesis of ruthenium (Ru) Nanoparticles (NPs) by chemical co-precipitation method. The calcination of ruthenium hydroxide samples at $500^{\circ}C$ under hydrogen atmosphere lead to the formation of $Ru^0$ NPs. The size and aggregation of Ru NPs depends on the pH of the medium, and type of surfactant and its concentration. The X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope image (TEM) analyses of particles indicated the formation of $Ru^0$ NPs, and have 10 to 20 nm sizes. As-synthesized $Ru^0$ NPs are characterized and investigated their catalytic ability in click chemistry (azidealkyne cycloaddition reactions), showing good results in terms of reactivity. Interestingly, small structural differences in triazines influence the catalytic activity of $Ru^0$ nanocatalysts. Click chemistry has recently emerged to become one of the most powerful tools in drug discovery, chemical biology, proteomics, medical sciences and nanotechnology/nanomedicine. In addition, preliminary tests of recycling showed good results with neither loss of activity or significant precipitation.

Particle Size Effect: Ru-Modified Pt Nanoparticles Toward Methanol Oxidation

  • Kim, Se-Chul;Zhang, Ting;Park, Jin-Nam;Rhee, Choong-Kyun;Ryu, Ho-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3331-3337
    • /
    • 2012
  • Ru-modified Pt nanoparticles of various sizes on platelet carbon nanofiber toward methanol oxidation were investigated in terms of particle size effect. The sizes of Pt nanoparticles, prepared by polyol method, were in the range of 1.5-7.5 nm and Ru was spontaneously deposited by contacting Pt nanoparticles with the Ru precursor solutions of 2 and 5 mM. The Ru-modified Pt nanoparticles were characterized using transmission electron microscopy, X-ray photoelectron spectroscopy and cyclic voltammetry. The methanol oxidation activities of Ru-modified Pt nanoparticles, measured using cyclic voltammetry and chronoamperometry, revealed that when the Pt particle size was less than 4.3 nm, the mass specific activity was fairly constant with an enhancement factor of more than 2 at 0.4 V. However, the surface area specific activity was maximized on Pt nanoparticles of 4.3 nm modified with 5 mM Ru precursor solution. The observations were discussed in terms of the enhancement of poison oxidation by Ru and the population variation of Pt atoms at vertices and edges of Pt nanoparticles due to selective deposition of Ru on the facets of (111) and (100).

Ruthenium Oxide Nanoparticles Electrodeposited on the Arrayed ITO Nanorods and Its Application to Supercapacitor Electrode

  • Ryu, Ilhwan;Lee, Jinho;Park, Dasom;Yim, Sanggyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.296-296
    • /
    • 2013
  • Supercapacitor is a capacitor with extraordinarily high energy density, which basically consists of current collector, active material and electrolyte. Ruthenium oxide ($RuO_2$) is one of the most widely studied active materials due to its high specific capacitance and good electrical conductivity. In general, it is known that the coating of $RuO_2$ on nanoarchitectured current collector shows improved performance of energy storage device compared to the coating on the planar current collector. Especially, the surface structure with standing coaxial nanopillars are most desirable since it can provide direct paths for efficient charge transport along the axial paths of each nanopillars and the inter-nanopillar spacing allows easy access of electrolyte ions. However, well-known fabrication methods for metal or metal oxide nanopillars, such as the process using anodize aluminum oxide (AAO) templates, often require long and complicated nanoprocess.In this work, we developed relatively simple method fabricating indium tin oxide (ITO) nanopillars via sputtering. We also electrodeposited $RuO_2$ nanoparticles onto these ITO nanopillars and investigated its physical and electrochemical properties.

  • PDF

Ru-NiOx nanohybrids on TiO2 support prepared by impregnation-reduction method for efficient hydrogenation of lactose to lactitol

  • Mishra, Dinesh Kumar;Dabbawala, Aasif A.;Truong, Cong Chien;Alhassan, Saeed M.;Jegal, Jonggeon;Hwang, Jin Soo
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.325-334
    • /
    • 2018
  • Lactose is a reducing disaccharide consisting of two different monosaccharides such as galactose and glucose. The hydrogenation of lactose to lactitol is a formidable challenge because it is a complex process and several side products are formed. In this work, we synthesized Ru-Ni bimetallic nanohybrids as efficient catalysts for selective lactose hydrogenation to give selective lactitol. Ru-Ni bimetallic nanohybrids with $Ru-NiO_x$ (x = 1, 5, and 10 wt%) are prepared by impregnating Ru and Ni salts precursors with $TiO_2$ used as support material. Ru-Ni bimetallic nanohybrids (represented as $5Ru-5NiO/TiO_2$) catalyst is found to exhibit the remarkably high selectivity of lactitol (99.4%) and turnover frequency i.e. ($374h^{-1}$). In contrast, monometallic $Ru/TiO_2$ catalyst shows poor performance with ($TOF=251h^{-1}$). The detailed characterizations confirmed a strong interaction between Ru and NiO species, demonstrating a synergistic effect on the improvement on lactitol selectivity. The impregnation-reduction method for the preparation of bimetallic $Ru-NiO/TiO_2$ catalyst promoted Ru nanoparticles dispersed on NiO and intensified the interaction between Ru and NiO species. $Ru-NiO/TiO_2$ efficiently catalyzed the hydrogenation of lactose to lactitol with high yield/selectivity at almost complete conversion of lactose at $120^{\circ}C$ and 55 bar of hydrogen ($H_2$) pressure. Moreover, $Ru-NiO/TiO_2$ catalyst could also be easily recovered and reused up to four runs without notable change in original activity.

A Polymer Interface for Varying Electron Transfer Rate with Electrochemically Formed Gold Nanoparticles from Spontaneously Incorporated Tetrachloroaurate(III) Ions

  • Song, Ji-Seon;Kang, Chan
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.10
    • /
    • pp.1683-1688
    • /
    • 2007
  • This paper presents a novel simple method for introducing gold nanoparticles in a poly(4-vinylpyridine) (PVP) polymer layer over a glassy carbon (GC) electrode with the aim of forming a tunable electrochemical interface against a cationic ruthenium complex. Initially, AuCl4 ? ions were spontaneously incorporated into a polymer layer containing positively charged pyridine rings in an acidic media by ion exchange. A negative potential was then applied to electrochemically reduce the incorporated AuCl4 ? ions to gold nanoparticles, which was confirmed by the FE-SEM images. The PVP layer with an appropriate thickness over the electrode blocked electron transfer between the electrode and the solution phase for the redox reactions of the cationic Ru(NH3)6 2+ ions. However, the introduction of gold nanoparticles into the polymer layer recovered the electron transfer. In addition, the electron transfer rate between the two phases could be tuned by controlling the number density of gold nanoparticles.

The Role of the Surface Oxide Layer on Ru Nanoparticles in Catalytic Activity of CO Oxidation

  • Kim, Sun-Mi;Qadir, Kamran;Jin, Sook-Young;Jung, Kyeong-Min;Reddy, A. Satyanarayana;Joo, Sang-Hoon;Park, Jeong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.304-304
    • /
    • 2010
  • The study on the catalytic oxidation of carbon monoxide (CO) to carbon dioxide ($CO_2$) using the noble metals has long been the interest subject and the recent progress in nanoscience provides the opportunity to develop new model systems of catalysts in this field. Of the noble metal catalysts, we selected ruthenium (Ru) as metal catalyst due to its unusual catalytic behavior. The size of colloid Ru NPs was controlled by the concentration of Ru precursor and the final reduction temperatures. For catalytic activity of CO oxidation, it was found that the trend is dependent on the size of Ru NPs. In order to explain this trend, the surface oxide layer surrounding the metal core has been suggested as the catalytically active species through several studies. In this poster, we show the influence of surface oxide on Ru NPs on the catalytic activity of CO oxidation using chemical treatments including oxidation, reduction and UV-Ozone surface treatment. The changes occurring to UV-Ozone surface treatment will be characterized with XPS and SEM. The catalytic activity before and after the chemical modification were measured. We discuss the trend of catalytic activity in light of the formation of core-shell type oxide on nanoparticles surfaces.

  • PDF

Synthesis and Electrochemical Characterization of Porous Co3O4/RuO2 Composite (다공성 Co3O4/RuO2 복합체 합성 및 전기화학적 특성)

  • Lim, Hye-Min;Ryu, Kwang-Sun
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.118-122
    • /
    • 2012
  • We synthesized porous $Co_3O_4/RuO_2$ composite using the soft template method. Cetyl trimethyl ammonium bromide (CTAB) was used to make micell as a cation surfactant. The precipitation of cobalt ion and ruthenium ion for making porosity in particles was induced by $OH^-$ ion. The porous $Co_3O_4/RuO_2$ composite was completely synthesiszed after anealing until $250^{\circ}C$ at $3^{\circ}C$/min. From the XRD ananysis, we were able to determine that the porous $Co_3O_4$/RuO2 composite was comprised of nanoparticles with low crystallinity. The shape or structure of the porous $Co_3O_4/RuO_2$ composite was studied by FE-SEM and FE-TEM. The size of the porous $Co_3O_4/RuO_2$ composite was 20~40 nm. From the FE-TEM, we were able to determine that porous cavities were formed in the composite particles. The electrochemical performance of the porous $Co_3O_4/RuO_2$ composite was measured by CV and charge-discharge methods. The specific capacitances, determined through cyclic voltammetry (CV) measurement, were ~51, ~47, ~42, and ~33 F/g at 5, 10, 20, and 50 mV/sec scan rates, respectively. The specific capacitance through charge-discharge measurement was ~63 F/g in the range of 0.0~1.0 V cutoff voltage and 50 mAh/g current density.

Synthesis of Self-Assembled Peptide Nanoparticles Based on Dityrosine Covalent Bonds (다이타이로신 공유결합으로 자기조립된 펩타이드 나노입자의 합성)

  • Hur, Yun-Mi;Min, Kyoung-Ik
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.112-117
    • /
    • 2021
  • In this study, a method of self-assembly of peptides based on irreversible covalent bonds was studied by mimicking a biological covalent bond, dityrosine bond. A tyrosine-rich short peptide monomer having the sequence of Tyr-Tyr-Leu-Tyr-Tyr (YYLYY) was selected to achieve a high-density of dityrosine bond. The peptide nanoparticles covalently self-assembled with dityrosine bonds were synthesized by one-step photo-crosslinking of a peptide using a ruthenium catalyst under visible light. The effect of the concentration of each component for the size of the peptide nanoparticle was studied using dynamic light scattering, UV-Vis spectroscopy, and transmission electron microscopy. As a result, the synthesis conditions for size of the peptide nanoparticles ranging from 130 nm to 350 nm were optimized.