Browse > Article
http://dx.doi.org/10.3740/MRSK.2012.22.3.118

Synthesis and Electrochemical Characterization of Porous Co3O4/RuO2 Composite  

Lim, Hye-Min (Department of Chemistry, University of Ulsan)
Ryu, Kwang-Sun (Department of Chemistry, University of Ulsan)
Publication Information
Korean Journal of Materials Research / v.22, no.3, 2012 , pp. 118-122 More about this Journal
Abstract
We synthesized porous $Co_3O_4/RuO_2$ composite using the soft template method. Cetyl trimethyl ammonium bromide (CTAB) was used to make micell as a cation surfactant. The precipitation of cobalt ion and ruthenium ion for making porosity in particles was induced by $OH^-$ ion. The porous $Co_3O_4/RuO_2$ composite was completely synthesiszed after anealing until $250^{\circ}C$ at $3^{\circ}C$/min. From the XRD ananysis, we were able to determine that the porous $Co_3O_4$/RuO2 composite was comprised of nanoparticles with low crystallinity. The shape or structure of the porous $Co_3O_4/RuO_2$ composite was studied by FE-SEM and FE-TEM. The size of the porous $Co_3O_4/RuO_2$ composite was 20~40 nm. From the FE-TEM, we were able to determine that porous cavities were formed in the composite particles. The electrochemical performance of the porous $Co_3O_4/RuO_2$ composite was measured by CV and charge-discharge methods. The specific capacitances, determined through cyclic voltammetry (CV) measurement, were ~51, ~47, ~42, and ~33 F/g at 5, 10, 20, and 50 mV/sec scan rates, respectively. The specific capacitance through charge-discharge measurement was ~63 F/g in the range of 0.0~1.0 V cutoff voltage and 50 mAh/g current density.
Keywords
supercapacitor; electrode material; $Co_3O_4/RuO_2$ composite; specific capacitance; nanoparticle;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M. Hughes, M. S. P. Shaffer, A. C. Renouf, C. Singh, G. Z. Chen, D. J. Fray and A. H. Windle, Adv. Mater., 14, 382 (2002).   DOI   ScienceOn
2 C. Lin, J. A. Ritter and B. N. Popov, J. Electrochem. Soc., 146, 3155 (1999).   DOI
3 C. -C. Hu, W. -C. Chen and K. -H. Chang, J. Electrochem. Soc., 151, A281 (2004).   DOI   ScienceOn
4 C. -C. Hu, K. -H. Chang, M. -C. Lin and Y. -T. Wu, Nano Lett., 6, 2690 (2006).   DOI   ScienceOn
5 X. Tang, Z. -H. Liu, C. Zhang, Z. Yang and Z.Wang, J. Power Sourc., 193, 939 (2009).
6 H. S. Min, S. Kim, D. S. Cheong, W. K. Choi, Y. J. Oh and J. K. Lee, Kor. J. Mater. Res., 19(10), 544 (2009) (in Korean).   DOI   ScienceOn
7 W. J. Kim and S. M. Yang, Chem. Mater., 12, 3227 (2000).   DOI   ScienceOn
8 J. M. Ko and K. M. Kim, Korean. Chem. Eng. Res., 47, 11 (2009) (in Korean).
9 K. -H. Chang and C. -C. Hu, Appl. Phys. Lett., 88, 193102 (2006).   DOI   ScienceOn
10 B. E. Conway, Electrochemical Supercapacitors, p. 11-31, Kluwer, New York (1999).
11 A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld and J. P. Ferraris, J. Power Sourc., 47, 89 (1994).   DOI   ScienceOn
12 G. Z. Chen, M. S. P. Shaffer, D. Coleby, G. Dixon, W. Zhou, D. J. Fray and A. H. Windle, Adv. Mater., 12, 522 (2000).   DOI   ScienceOn
13 K. -W. Nam, W. -S. Yoon and K. -B. Kim, Electrochim. Acta, 47, 3201 (2002).   DOI   ScienceOn
14 K. R. Prasad and N. Miura, Appl. Phys. Lett., 85, 4199 (2004).   DOI   ScienceOn
15 S. R. Sivakkumar, J. M. Ko, D. Y. Kim, B. C. Kim and G. G. Wallace, Electrochim. Acta, 52, 7377 (2007).   DOI   ScienceOn
16 R. Y. Song, J. H. Park, S. R. Sivakkumar, S. H. Kim, J. M. Ko, D. -Y. Park, S. M. Jo and D. Y. Kim, J. Power Sourc., 166, 297 (2007).   DOI   ScienceOn
17 K. H. An, W. S. Kim, Y. S. Park, J. M. Moon, D. J. Bae, S. C. Lim, Y. S. Lee and Y. H. Lee, Adv. Funct. Mater., 11, 387 (2001).   DOI   ScienceOn