Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.10.3331

Particle Size Effect: Ru-Modified Pt Nanoparticles Toward Methanol Oxidation  

Kim, Se-Chul (Gruaduate School of Analytical Science and Technology, Chungnam National University)
Zhang, Ting (Department of Chemistry, Chungnam National University)
Park, Jin-Nam (Department of New & Renewable Energy, Kyungil University)
Rhee, Choong-Kyun (Gruaduate School of Analytical Science and Technology, Chungnam National University)
Ryu, Ho-Jin (Energy Materials Research Center, Korea Research Institute of Chemical Technology)
Publication Information
Abstract
Ru-modified Pt nanoparticles of various sizes on platelet carbon nanofiber toward methanol oxidation were investigated in terms of particle size effect. The sizes of Pt nanoparticles, prepared by polyol method, were in the range of 1.5-7.5 nm and Ru was spontaneously deposited by contacting Pt nanoparticles with the Ru precursor solutions of 2 and 5 mM. The Ru-modified Pt nanoparticles were characterized using transmission electron microscopy, X-ray photoelectron spectroscopy and cyclic voltammetry. The methanol oxidation activities of Ru-modified Pt nanoparticles, measured using cyclic voltammetry and chronoamperometry, revealed that when the Pt particle size was less than 4.3 nm, the mass specific activity was fairly constant with an enhancement factor of more than 2 at 0.4 V. However, the surface area specific activity was maximized on Pt nanoparticles of 4.3 nm modified with 5 mM Ru precursor solution. The observations were discussed in terms of the enhancement of poison oxidation by Ru and the population variation of Pt atoms at vertices and edges of Pt nanoparticles due to selective deposition of Ru on the facets of (111) and (100).
Keywords
Ruthenium; Platinum; Particle size effect; Methanol oxidation; Spontaneous deposition;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Ralph, T. R.; Hogarth, M. P. Platinum Metals Rev. 2002, 46, 117.
2 Kinoshita, K. Electrochemical Oxygen Technology; John Wiley and Sons: 1992.
3 Markovic, N. M.; Schmidt, T. J.; Stamenkovic, V.; Ross, P. N. Fuel Cells 2001, 1, 105.   DOI
4 Waszczuk, P.; Solla-Gullon, J.; Kim, H. S.; Tong, Y. Y.; Montiel, V.; Aldaz, A.; Wieckowski, A. J. Catal. 2001, 203, 1.   DOI   ScienceOn
5 Iwasita, T. Electrochimca Acta 2002, 47, 3663.   DOI   ScienceOn
6 Yoon, S.-H.; Lim, S.; Hong, S.-H. Carbon 2005, 43, 1828.   DOI   ScienceOn
7 Bock, C.; Paquet, C.; Couillard, M.; Botton, G. A.; MacDougall, B. R. J. Am. Chem. Soc. 2004, 126, 8028.   DOI   ScienceOn
8 Jang, J. H.; Han, S.; Hyeon, T.; Oh, S. M. J. Power Source 2003, 123, 79.   DOI   ScienceOn
9 Rodriguez, N. M.; Chambers, A.; Baker, R. T. K. Langmuir 1995, 11, 3862.   DOI   ScienceOn
10 Kim, T. G.; Lim, Y.; Kwon, K. H.; Hong, S. H.; Qiao, W. M.; Rhee, C. K.; Yoon, S.-H.; Mochida, I. Langmuir 2006, 22, 9086.   DOI   ScienceOn
11 Vericat, C.; Wakisaka, M.; Haasch, R.; Bagus, P. S.; Wieckowski, A. J. Solid State Electrochem. 2004, 8, 794.
12 Folkesson, B. Acta Chemica Scandinavica 1973, 27, 287.   DOI
13 Kim, H.; Park, J.-N.; Lee, W.-H. Catal. Today 2003, 87, 237.   DOI   ScienceOn
14 Chrzanowski, W.; Wieckowski, A. Catal. Lett. 1998, 50, 69.   DOI
15 Briggs, D.; Seah, M. P. Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy; John Wiley and Sons: 1990; Vol. 1
16 Mayrhofer, K. J. J.; Blizanac, B. B.; Arenz, M.; Stamenkovic, V. R.; Ross, P. N.; Markovic, N. M. J. Phys. Chem. B 2005, 109, 14433.   DOI
17 Iwasita, T. In Methanol and CO Electrooxidation; Vielstich, W., Lamm, A., Gasteiger, H. A., Eds.; John Wiley and Sons: 2003; Vol. 2, pp 603-624.
18 Jung, C.; Zhang, T.; Kim, B.-J.; Kim, J.; Rhee, C. K.; Lim, T.-H. Bull. Korean Chem. Soc. 2010, 31, 1543.   DOI   ScienceOn
19 Maillard, F.; Pronkin, S.; Savinova, E. R. In Influence of Size on the Electrocatalytic Activities of Supported Metal Nanoparticles in Fuel Cell-Related Reactions; Vielstich, W., Yokokawa, H., Gasteiger, H. A., Eds.; John Wiley and Sons: 2009; Vol. 5, pp 91- 111.
20 Rhee, C. K.; Kim, B.-J.; Ham, C.; Kim, Y.-J.; Song, K.; Kwon, K. Langmuir 2009, 25, 7140.   DOI   ScienceOn
21 Jung, C.; Kim, J.; Rhee, C. K. Electrochem. Comm. 2010, 12, 1363.   DOI   ScienceOn
22 Shukla, A. K.; Neegat, M.; Bera, P.; Jayaram, V.; Hegde, M. S. J. Electroanal. Chem. 2001, 504, 111.   DOI   ScienceOn
23 Gasteiger, H. A.; Markovic, N.; Ross, P. N. J. Phys. Chem. 1995, 99, 16757.   DOI   ScienceOn
24 Arico, A. S.; Antonucci, P. L.; Modica, E.; Baglio, V.; Kim, H.; Antonucci, V. Electrochimica Acta 2002, 47, 3723.   DOI   ScienceOn
25 Holstein, W. L.; Rosenfeld, H. D. J. Phys. Chem. B 2005, 109, 2176.   DOI   ScienceOn
26 Cramm, S.; Friedrich, K. A.; Geyzers, K.-P.; Stimming, U.; Vogel, R. Fresen. J. Anal. Chem. 1997, 358, 189.   DOI
27 Maillard, F.; Gloaguen, F.; Leger, J.-M. J. Appl. Electrochem. 2003, 33, 1.   DOI   ScienceOn
28 Vigier, F.; Gloaguen, F.; Leger, J. M.; Lamy, C. Electrochimica Acta 2001, 46, 4331.   DOI   ScienceOn
29 Hoster, H.; Iwasita, T.; Baumgartner, H.; Vielstich, W. J. Electrochem. Soc. 2001, 148, A496.   DOI   ScienceOn
30 Davies, J. C.; Hayden, B. E.; Pegg, D. J.; Rendall, M. E. Surf. Sci. 2002, 496, 110.   DOI   ScienceOn
31 EG&G Technical Services Fuel Cell Handbook, 7th edn.; U.S. Department of Energy: 2004.
32 Chrzanowski, W.; Wieckowski, A. Langmuir 1997, 13, 5974.   DOI   ScienceOn
33 Ross P. N. In Oxygen Reduction Reaction on Smooth Single Crystal Electrodes; Vielstich, W., Lamm, A., Gasteiger, H. A., Eds.; John Wiley and Sons: 2003; Vol. 2, pp 465-480.