DOI QR코드

DOI QR Code

Ru-NiOx nanohybrids on TiO2 support prepared by impregnation-reduction method for efficient hydrogenation of lactose to lactitol

  • Mishra, Dinesh Kumar (Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Dabbawala, Aasif A. (Material and Catalysis Division, Chemical Engineering Department, Khalifa University of Science and Technology) ;
  • Truong, Cong Chien (University of Science and Technology (UST), Korea Institute of Industrial Technology (KITECH) Campus) ;
  • Alhassan, Saeed M. (Material and Catalysis Division, Chemical Engineering Department, Khalifa University of Science and Technology) ;
  • Jegal, Jonggeon (Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Hwang, Jin Soo (Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT))
  • Received : 2018.04.24
  • Accepted : 2018.08.08
  • Published : 2018.12.25

Abstract

Lactose is a reducing disaccharide consisting of two different monosaccharides such as galactose and glucose. The hydrogenation of lactose to lactitol is a formidable challenge because it is a complex process and several side products are formed. In this work, we synthesized Ru-Ni bimetallic nanohybrids as efficient catalysts for selective lactose hydrogenation to give selective lactitol. Ru-Ni bimetallic nanohybrids with $Ru-NiO_x$ (x = 1, 5, and 10 wt%) are prepared by impregnating Ru and Ni salts precursors with $TiO_2$ used as support material. Ru-Ni bimetallic nanohybrids (represented as $5Ru-5NiO/TiO_2$) catalyst is found to exhibit the remarkably high selectivity of lactitol (99.4%) and turnover frequency i.e. ($374h^{-1}$). In contrast, monometallic $Ru/TiO_2$ catalyst shows poor performance with ($TOF=251h^{-1}$). The detailed characterizations confirmed a strong interaction between Ru and NiO species, demonstrating a synergistic effect on the improvement on lactitol selectivity. The impregnation-reduction method for the preparation of bimetallic $Ru-NiO/TiO_2$ catalyst promoted Ru nanoparticles dispersed on NiO and intensified the interaction between Ru and NiO species. $Ru-NiO/TiO_2$ efficiently catalyzed the hydrogenation of lactose to lactitol with high yield/selectivity at almost complete conversion of lactose at $120^{\circ}C$ and 55 bar of hydrogen ($H_2$) pressure. Moreover, $Ru-NiO/TiO_2$ catalyst could also be easily recovered and reused up to four runs without notable change in original activity.

Keywords

Acknowledgement

Supported by : KRICT, Korea Research Council of Industrial Science and Technology

References

  1. P. Gallezot, P.J. Cerino, B. Blanc, G. Fleche, P. Fuertes, J. Catal. 146 (1994) 93. https://doi.org/10.1016/0021-9517(94)90012-4
  2. C. Hernandez-Mejia, E.S. Gnanakumar, A. Olivos-Suarez, J. Gascon, H.F. Greer, W. Zhou, G. Rothenberg, N. Raveendran Shiju, Catal. Sci. Technol. 6 (2016) 577. https://doi.org/10.1039/C5CY01005E
  3. B. Kusserow, S. Schimpf, P. Claus, Adv. Synth. Catal. 345 (2003) 289. https://doi.org/10.1002/adsc.200390024
  4. K. van Gorp, E. Boerman, C.V. Cavenaghi, P.H. Berben, Catal. Today 52 (1999) 349. https://doi.org/10.1016/S0920-5861(99)00087-5
  5. J. Wisniak, M. Hershkowitz, R. Leibowitz, S. Stein, Product R&D 13 (1974) 75.
  6. H. Kobayashi, H. Matsuhashi, T. Komanoya, K. Hara, A. Fukuoka, Chem. Commun. 47 (2011) 2366. https://doi.org/10.1039/C0CC04311G
  7. D.Y. Murzin, A. Duque, K. Arve, V. Sifontes, A. Aho, K. Eranen, T. Salmi, Chapter 3 Catalytic Hydrogenation of Sugars, The Royal Society of Chemistry, 2016 p. 89.
  8. A.P. Tathod, P.L. Dhepe, Green Chem. 16 (2014) 4944. https://doi.org/10.1039/C4GC01264J
  9. P. Vaz de Arruda, J.C. dos Santos, R. de Cassia Lacerda Brambilla Rodrigues, D.D. V. da Silva, C.K. Yamakawa, G.J. de Moraes Rocha, J.N. Junior, J.G. da Cruz Pradella, C.E. Vaz Rossell, M. das Gracas de Almeida Felipe, J. Ind. Eng. Chem. 47 (2017) 297. https://doi.org/10.1016/j.jiec.2016.11.046
  10. Y.S. Eo, H.-W. Rhee, S. Shin, J. Ind. Eng. Chem. 37 (2016) 42. https://doi.org/10.1016/j.jiec.2016.03.007
  11. A.A. Dabbawala, J.J. Park, A.H. Valekar, D.K. Mishra, J.-S. Hwang, Catal. Commun. 69 (2015) 207. https://doi.org/10.1016/j.catcom.2015.06.017
  12. A.A. Dabbawala, D.K. Mishra, G.W. Huber, J.-S. Hwang, Appl. Catal. A: Gen. 492 (2015) 252. https://doi.org/10.1016/j.apcata.2014.12.014
  13. C. Cui, Z. Zhang, Q. Zeng, B. Chen, RSC Adv. 6 (2016) 108180. https://doi.org/10.1039/C6RA23984F
  14. C. Dussenne, T. Delaunay, V. Wiatz, H. Wyart, I. Suisse, M. Sauthier, Green Chem. 19 (2017) 5332. https://doi.org/10.1039/C7GC01912B
  15. D.K. Mishra, J.-M. Lee, J.-S. Chang, J.-S. Hwang, Catal. Today 185 (2012) 104. https://doi.org/10.1016/j.cattod.2011.11.020
  16. M. Yadav, D.K. Mishra, J.-S. Hwang, Appl. Catal. A: Gen. 425-426 (2012) 110. https://doi.org/10.1016/j.apcata.2012.03.007
  17. D.K. Mishra, A.A. Dabbawala, J.-S. Hwang, J. Mol. Cat. A: Chem. 376 (2013) 63. https://doi.org/10.1016/j.molcata.2013.04.011
  18. D.K. Mishra, A.A. Dabbawala, J.-S. Hwang, Catal. Commun. 41 (2013) 52. https://doi.org/10.1016/j.catcom.2013.07.002
  19. X. Zhang, L.J. Durndell, M.A. Isaacs, C.M.A. Parlett, A.F. Lee, K. Wilson, ACS Catal. 6 (2016) 7409. https://doi.org/10.1021/acscatal.6b02369
  20. J. Kuusisto, J.-P. Mikkola, P.P. Casal, H. Karhu, J. Vayrynen, T. Salmi, Chem. Eng. J. 115 (2005) 93. https://doi.org/10.1016/j.cej.2005.09.020
  21. C. Zacharis, Lactitol, Wiley-Blackwell, 2012 p. 275.
  22. H. Young, Lactitol, Blackwell Publishing Ltd., 2007 p. 205.
  23. J. Kuusisto, J.-P. Mikkola, M. Sparv, J. Warna, H. Heikkila, R. Perala, J. Vayrynen, T. Salmi, Ind. Eng. Chem. Res. 45 (2006) 5900. https://doi.org/10.1021/ie0601899
  24. J. Kuusisto, J.-P. Mikkola, M. Sparv, J. Warna, H. Karhu, T. Salmi, Chem. Eng. J. 139 (2008) 69. https://doi.org/10.1016/j.cej.2007.07.084
  25. I.H. Blankers, I. Evers, J.J.M. Putker, B. Terlouw, Liquid, transparent mixture based on lactitol, U.S. Patents, 6444250 (2002).
  26. A. Drakoularakou, O. Hasselwander, M. Edinburgh, A.C. Ouwehand, Food Sci. Technol. Bull. Funct. Foods 3 (2007) 73.
  27. Y.-D. Kim, T.-E. Park, B. Singh, K.-S. Cho, J.N. Sangshetti, Y.-J. Choi, R.B. Arote, C.-S. Cho, J. Mater. Chem. B 4 (2016) 2208. https://doi.org/10.1039/C5TB01799H
  28. J.H. Han, J.M. Krochta, M.J. Kurth, Y.-L. Hsieh, J. Agric. Food Chem. 48 (2000) 5278. https://doi.org/10.1021/jf991329a
  29. J. Hellrup, M. Holmboe, K.P. Nartowski, Y.Z. Khimyak, D. Mahlin, Langmuir 32 (2016) 13214. https://doi.org/10.1021/acs.langmuir.6b01967
  30. F. Zaccheria, M. Mariani, N. Scotti, R. Psaro, N. Ravasio, Green Chem. 19 (2017) 1904. https://doi.org/10.1039/C7GC00741H
  31. R. Jawad, A.F. Drake, C. Elleman, G.P. Martin, F.J. Warren, B.B. Perston, P.R. Ellis, M.A. Hassoun, P.G. Royall, Mol. Pharm. 11 (2014) 2224. https://doi.org/10.1021/mp400509t
  32. M.J. Lindsay, T.W. Walker, J.A. Dumesic, S.A. Rankin, G.W. Huber, Green Chem. 20 (2018) 1824. https://doi.org/10.1039/C8GC00517F
  33. P.F. Fox, Advanced Dairy Chemistry Volume 3: Lactose, Water, Salts and Vitamins, Springer, US, 2013.
  34. G.M. Westhoff, B.F.M. Kuster, M.C. Heslinga, H. Pluim, M. Verhage, Lactose and Derivatives, Wiley-VCH Verlag GmbH & Co KGaA, 2000.
  35. H.E.J. Hendriks, B.F.M. Kuster, G.B. Marin, Carbohydr. Res. 204 (1990) 121. https://doi.org/10.1016/0008-6215(90)84027-R
  36. A. Abbadi, K.F. Gotlieb, J.B.M. Meiberg, H. van Bekkum, Appl. Catal. A: Gen. 156 (1997) 105. https://doi.org/10.1016/S0926-860X(96)00409-7
  37. V.Y. Doluda, J. Warna, A. Aho, A.V. Bykov, A.I. Sidorov, E.M. Sulman, L.M. Bronstein, T. Salmi, D.Y. Murzin, Ind. Eng. Chem. Res. 52 (2013) 14066. https://doi.org/10.1021/ie401778y
  38. Z. Wu, Y. Wang, L. Sun, Y. Mao, M. Wang, C. Lin, J. Mater. Chem. A 2 (2014) 8223. https://doi.org/10.1039/c4ta00850b
  39. T. Sreethawong, Y. Suzuki, S. Yoshikawa, Int. J. Hydrogen Energy 30 (2005) 1053. https://doi.org/10.1016/j.ijhydene.2004.09.007
  40. S.H. Choi, J.-H. Lee, Y. Chan Kang, Nanoscale 5 (2013) 12645. https://doi.org/10.1039/c3nr04406h
  41. A. Kumar, A. Sanger, A. Kumar, R. Chandra, RSC Adv. 6 (2016) 77636. https://doi.org/10.1039/C6RA14342C
  42. Q. Jin, T. Ikeda, M. Fujishima, H. Tada, Chem. Commun. 47 (2011) 8814. https://doi.org/10.1039/c1cc13096j
  43. Z.H. Ibupoto, M.A. Abbasi, X. Liu, M.S. AlSalhi, M. Willander, J. Nanomater. 2014 (2014) 6.
  44. C. Shifu, Z. Sujuan, L. Wei, Z. Wei, J. Hazard. Mater. 155 (2008) 320. https://doi.org/10.1016/j.jhazmat.2007.11.063
  45. S. Pichaikaran, P. Arumugam, Green Chem. 18 (2016) 2888. https://doi.org/10.1039/C5GC01854D
  46. C. Elmasides, D.I. Kondarides, W. Grunert, X.E. Verykios, J. Phys. Chem. B 103 (1999) 5227.
  47. Y.V. Larichev, B.L. Moroz, V.I. Zaikovskii, S.M. Yunusov, E.S. Kalyuzhnaya, V.B. Shur, V.I. Bukhtiyarov, J. Phys. Chem. C 111 (2007) 9427. https://doi.org/10.1021/jp066970b
  48. S. Zhou, H. Yin, V. Schwartz, Z. Wu, D. Mullins, B. Eichhorn, S.H. Overbury, S. Dai, ChemPhysChem 9 (2008) 2475. https://doi.org/10.1002/cphc.200800587
  49. K. Mori, K. Miyawaki, H. Yamashita, ACS Catal. 6 (2016) 3128. https://doi.org/10.1021/acscatal.6b00715
  50. M. Zahmakran, S. Ozkar, J. Mater. Chem. 19 (2009) 7112. https://doi.org/10.1039/b910766e
  51. M.A. Harmer, A. Fan, A. Liauw, R.K. Kumar, Chem. Commun. (2009) 6610.
  52. C.A. Ramirez-Lopez, J.R. Ochoa-Gomez, S. Gil-Rio, O. Gomez-Jimenez-Aberasturi, J. Torrecilla-Soria, J. Chem. Technol. Biotechnol. 86 (2011) 867. https://doi.org/10.1002/jctb.2602

Cited by

  1. Catalytic Production of Glucose-Galactose Syrup from Greek Yogurt Acid Whey in a Continuous‐Flow Reactor vol.13, pp.4, 2020, https://doi.org/10.1002/cssc.201902847
  2. Sugar alcohols derived from lactose: lactitol, galactitol, and sorbitol vol.104, pp.22, 2020, https://doi.org/10.1007/s00253-020-10929-w