• Title/Summary/Keyword: roughness value

Search Result 644, Processing Time 0.024 seconds

Calibration of the integrating sphere system for correcting the roughness effect in gauge block length measurement by using the Newton's rings interferometer (간섭무늬 분석을 통한 게이지 블록의 거칠기 효과 보정용 광산란장치 교정)

  • Kang C.S.;Kim J.W.;Cho M.J.;Kong H.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.47-48
    • /
    • 2006
  • A roughness measuring system which comprises an integrating sphere and a stabilized laser has been fabricated with the aim of measuring the roughness correction value which is necessary in gauge block measurement by optical interferometry. To calibrate the system, a Newton's ring interferometer has been introduced. The method how to calibrate the roughness measurement system has been described.

  • PDF

Influence of Surface Roughness Change on Frictional Behavior of Sheet Steel for Each Forming Mode (소성변형에 의한 냉연 강판의 표면 거칠기 변화가 마찰 특성에 미치는 영향)

  • Han, S.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.4
    • /
    • pp.236-241
    • /
    • 2010
  • The frictional behavior of bare steel sheet highly depends on surface roughness. It was investigated that the change of surface roughness of bare steel sheet due to deformation for each forming mode. The flat type friction test was done to check the effect of surface roughness change on frictional characteristics of bare steel sheet. As increasing the deformation, the Ra value was increased at stretching forming mode and drawing forming mode, however the change of Pc showed different trends. The Pc was decreased as increasing stretch deformation but increased at compression deformation. At drawing forming mode, the friction coefficient was increased as deformation was increased after initial big drop with drawing oil. As deformation was increased, the friction coefficient was decreased with drawing oil at stretching forming mode. The results show that the deformation changes the surface roughness and frictional characteristics of steel sheet but the effect depends on the forming mode.

Effect of Interface Roughness on Exchange Bias of an Uncompensated Interface: Monte Carlo Simulation

  • Li, Ying;Moon, Jung-Hwan;Lee, Kyung-Jin
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.323-327
    • /
    • 2011
  • By means of Monte Carlo simulation, we investigate the effects of interface roughness and temperature on the exchange bias and coercivity in ferromagnetic (FM)/antiferromagnetic (AFM) bilayers. Both exchange bias and coercivity are strongly dependent on interface roughness. For a perfect uncompensated interface a domain wall is formed in the AFM system during FM reversal, which results in a very small exchange bias. However, a finite interface roughness leads to a finite value of the exchange bias due to the existence of pinned spins at the AFM surface adjacent to the mixed interface. It is observed that the exchange bias decreases with increasing temperature, consistent with the experimental results. It is also observed that a bump in coercivity occurs around the blocking temperature.

Effect of rock joint roughness on shear strength (조도(粗度)가 전단강도에 미치는 영향)

  • 김영기;천성환
    • The Journal of Engineering Geology
    • /
    • v.2 no.1
    • /
    • pp.1-18
    • /
    • 1992
  • Rock mass having discontinuous plane almost appear roughness which have a great effect on shear strength. Rocks of studied object choose granites (15 samples), gneisses (7 samples), and andesites (1 sample). The purpose of this study was to clarify shear strength of discontinuous planes as value of shear strength angle (${\Phi}_p$), critical stress of roughness (${\sigma}_r$) and shear failure strength (${\tau}_o$). 1. Roughness decrease from ${\Phi}_i=38.03^{\circ}$ to $33.21^{\circ}$ that is, friction angle has the highest value at first stage and has the lowest value at the last stage. 2. Critical angle of roughness distribution within $45^{\circ}$ (test max. $angle=43^{\circ}$), JRC(Joint Roughness Coefficient) is less than 14 and lies distribution range of boundary is following: $JRC=-4.63Ln{\sigma}n+5.63$. 3. When the roughness critical stress(${\sigma}_T) is from 0.1 to 3 .56Mpa, shear failure strength of roughness (${\tau}_o$) is from 0.01 to 0.46Mpa, shear strength(${\tau}$) of discontinuous plane is from 3.65 to 39.11 Mpa. If loading is higher than these values, collapse and sliding will occur on the rock mass.

  • PDF

Electrical Characteristics of ZnO Piezo-electric Thin film for SAW filter (SAW 필터용 ZnO 압전 박막의 전기적 특성)

  • Lee, Dong-Yoon;Yoon, Seok-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.10
    • /
    • pp.909-916
    • /
    • 2005
  • The structural and electrical property of RF magnetron sputtered ZnO thin film have been studied as a function of RF power, substrate temperature, oxygen/argon gas ratio and film thickness at constant sputtering power, sputtering working pressure and target-substrate distance. To analyze a crystallo-graphic properties of the films, $\theta$/2$\theta$ mode X-ray diffraction, SEM, and AFM analyses. C-axis preferred orientation, resistivity and surface roughness highly depended on oxygen/argon gas ratio. The resistivity of ZnO thin film(6000 ${\AA}$) rapidly increased with increasing oxygen ratio and the resistivity value of $9 {\ast} 10^7 {\Omega}cm$ was obtained at a working pressure of 10 mTorr with the same oxygen/argon gas ratio. The surface roughness was also improved with increasing oxygen ratio and the ZnO films deposited with the same oxygen/argon gas ratio showed the excellent roughness value of 28.7 ${\AA}$. With increase of the substrate temperature, The C-axis preferred orientation of ZnO thin film increases and the resistivity decreases due to deviation from the stoichiometric ZnO due to oxygen deficiency.

Development of Weigh Calculation Method for Pavement Roughness Index Considering Vehicle Wandering Distribution (원더링 분포를 고려한 도로포장 평탄성 지수의 가중치 산정기법 개발)

  • Lee, Jaehoon;Sohn, Ducksu;Park, Jejin;Cho, Yoonho
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.89-96
    • /
    • 2017
  • PURPOSES: This study aims to develop a rational procedure for estimating the pavement roughness index considering vehicle wandering. METHODS : The location analysis of the passing vehicle in the lane was performed by approximately 1.2 million vehicles for verification of the wandering distribution. According to verification result, the distribution follows the normal distribution pattern. The probability density function was estimated using each lane's wandering distribution model. Then the procedure for applying a weighted value into the lane profile was conducted using this function. RESULTS : The modified index, MRIw, with consideration towards applying the wandering weighted value application was computed then compared with MRI. It was found that the Coefficient of Variation for distribution of lateral roughness index in the lane was high in the case of a large difference between each index (i.e., MRIw and MRI) observed. CONCLUSIONS : This result confirms that the new procedure with consideration of the weight factor can successfully improve the lane representative characteristics of the roughness index.

Change of Surface and Electrical Characteristics of Silicon Wafer by Wet Etching(2) - Relationship between Surface Roughness and Electrical Properties - (습식 식각에 의한 실리콘 웨이퍼의 표면 및 전기적 특성변화(2) - 표면거칠기와 전기적 특성의 상관관계 -)

  • Kim, Jun-Woo;Kang, Dong-Su;Lee, Hyun-Yong;Lee, Sang-Hyeon;Ko, Seong-Woo;Roh, Jae-Seung
    • Korean Journal of Materials Research
    • /
    • v.23 no.6
    • /
    • pp.322-328
    • /
    • 2013
  • The relationship the between electrical properties and surface roughness (Ra) of a wet-etched silicon wafer were studied. Ra was measured by an alpha-step process and atomic force microscopy (AFM) while varying the measuring range $10{\times}10$, $40{\times}40$, and $1000{\times}1000{\mu}m$. The resistivity was measured by assessing the surface resistance using a four-point probe method. The relationship between the resistivity and Ra was explained in terms of the surface roughness. The minimum error value between the experimental and theoretical resistivities was 4.23% when the Ra was in a range of $10{\times}10{\mu}m$ according to AFM measurement. The maximum error value was 14.09% when the Ra was in a range of $40{\times}40{\mu}m$ according to AFM measurement. Thus, the resistivity could be estimated when the Ra was in a narrow range.

A Study on C-axis Preferred Orientation of ZnO Thin Film at Ar/$O_2$gas ratios (Ar/$O_2$에 따른 ZnO 박막의 C-축 배향성에 관한 연구)

  • Lee, Dong-Yoon;Park, Yong-Wook;Nam, Sahn;Lee, Jeon-Kook;Kim, Hyun-Jai;Yoon, Seok-Jin;Whang, Keum-Chan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.7
    • /
    • pp.617-624
    • /
    • 2000
  • Zinc Oxide(ZnO) thin films on Si(100) substrate were deposited by RF magnetron reactive sputtering. The charcteristics of ZnO thin films on argon/oxygen(Ar/O$_2$)gas ratios RF power and substrate temperature were investigated by XRD, SEM, and AFM analyses. C-axis preferred orientation resistivity and surface roughness highly depended on Ar/O$_2$gas ratios. The resistivity of ZnO thin films rapidly increased with increasing oxygen ratio and the resistivity value of 9$\times$10$^{7}$ $\Omega$cm was obtained at a working pressure of 10 mTorr with Ar/O$_2$=50/50. The surface roughness was also improved with increasing oxygen ratio and the ZnO films deposited with Ar/O$_2$=50/50 showed the excellent roughness value of 28.7$\AA$.

  • PDF

Optical Simulation Study on Indoor Organic Photovoltaics with Textured Electrodes towards Self-powered Photodetector

  • Biswas, Swarup;Kim, Hyeok
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.236-239
    • /
    • 2019
  • In this work, we performed an optical simulation study on the performance of a PMDPP3T:PCBM based on an organic photovoltaic (PV) device. The virtual PV device was developed in Lumerical, finite-difference time-domain (FDTD) solutions. Different layers of the PV cell have been defined through the incorporation of complex refractive index value of those layers' constituent materials. During the simulation study, the effect of the variation active layer thickness on an ideal short circuit current density ($J_{sc,ideal}$) of the PV cell has been, first, observed. Thereafter, we have investigated the impact of surface roughness of a transparent conducting oxide (TCO) electrode on $J_{sc,ideal}$ of the PV cells. From this simulation, it has been observed that the $J_{sc,ideal}$ value of the PV cell is strongly dependent on the thickness of its active layer and the photon absorption of the PV cell has gradually decreased with the increment of the TCO's surface roughness. As a result, the capability of the PV device has been reduced with the increment of the surface roughness of the TCO.

A Study on the Machining Characteristics of Co-Cr-Mo Alloy in Turning Process (Co-Cr-Mo 합금의 선삭 가공 특성에 관한 연구)

  • Hong, Kwang-Pyo;Cho, Myeong-Woo;Choi, In-Joon
    • Design & Manufacturing
    • /
    • v.11 no.1
    • /
    • pp.50-54
    • /
    • 2017
  • In this study, researches were conducted as follows. First, as the basic experiment, the cutting speed, feedrate, and the depth of cut were set as the process parameters, and by setting the surface roughness as the factor of measurement for each of the combinations, and the analysis about cutting tendency of the material was conducted by proceeding the turning process of Co-Cr-Mo alloy. Second, by setting the feature of the surface roughness according to the 'turning processing condition' that was confirmed in the previous experiment, and by applying the Taguchi Method, the conditions that influence the features of the surface roughness according to the 'turning processing condition' of Co-Cr-Mo was analyzed, and also by measuring the surface roughness according to each of the 'cutting conditions', the optimal processing condition was generated. As the result of analysis, it was possible to understand that the factor that mostly affects the surface roughness was the cutting speed, followed by the dept of cutting and transfer speed, and as for the optimal processing condition, it was possible to find that the cutting speed was 5,000rpm, and the depth of cut was 0.1mm, and the feedrate was 0.003mm/rev, and the value of the surface roughness at this point is $0.197{\mu}m$.