Browse > Article
http://dx.doi.org/10.4283/JMAG.2011.16.4.323

Effect of Interface Roughness on Exchange Bias of an Uncompensated Interface: Monte Carlo Simulation  

Li, Ying (Department of Materials Science and Engineering, Korea University)
Moon, Jung-Hwan (Department of Materials Science and Engineering, Korea University)
Lee, Kyung-Jin (Department of Materials Science and Engineering, Korea University)
Publication Information
Abstract
By means of Monte Carlo simulation, we investigate the effects of interface roughness and temperature on the exchange bias and coercivity in ferromagnetic (FM)/antiferromagnetic (AFM) bilayers. Both exchange bias and coercivity are strongly dependent on interface roughness. For a perfect uncompensated interface a domain wall is formed in the AFM system during FM reversal, which results in a very small exchange bias. However, a finite interface roughness leads to a finite value of the exchange bias due to the existence of pinned spins at the AFM surface adjacent to the mixed interface. It is observed that the exchange bias decreases with increasing temperature, consistent with the experimental results. It is also observed that a bump in coercivity occurs around the blocking temperature.
Keywords
exchange bias; interface roughness; Monte Carlo simulation;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
  • Reference
1 L. Wee, R. L. Stamps, L. Malkinski, and Z. Celinski, Phys. Rev. B 69, 134426 (2004).   DOI
2 J. Nogue, T. J. Moran, D. Lederman, and Ivan K. Schuller, Phys. Rev. B 59, 6984 (1999).   DOI   ScienceOn
3 J. W. Stout and S. A. Reed, J. Am. Chem. Soc. 76, 5279 (1954).   DOI
4 M. Kiwi, J. Mejia-Lopez, R. D. Portugal, and R. Ramirez, Europhys. Lett. 48, 573 (1999).   DOI   ScienceOn
5 W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956)   DOI
6 W. H. Meiklejohn and C. P. Bean, Phys. Rev. 104, 904 (1957).
7 W. H. Meiklejohn, J. Appl. Phys. 33, 1328 (1962).   DOI
8 B. Beckmann, U. Nowak, and K. D. Usadel, Phys. Rev. Lett. 91, 187201 (2003).   DOI   ScienceOn
9 M. E. J. Newman and G. T. Barkema, Monte Carlo Methods in Statistical Physics, Clarendon Press, Oxford pp. 46-53 (1999).
10 A. S. Carrico, R. E. Camley, and R. L. Stamps, Phys. Rev. B 50, 13453 (1994).   DOI   ScienceOn
11 H. Fujiwara et al., J. Appl. Phys. 79, 6286 (1996).   DOI   ScienceOn
12 C. Hou, H. Fujiwara, K. Zhang, A. Tanaka, and Y. Shimizu, Phys. Rev. B 63, 024411 (2000).   DOI   ScienceOn
13 T. J. Moran, J. Nogues, D. Lederman, and Ivan K. Schuller, Appl. Phys. Lett. 72, 617 (1998).   DOI   ScienceOn
14 H. Ohldag, H. T. Shi, E. Arenholz, J. Stohr, and D. Lederman, Phys. Rev. Lett. 96, 027203 (2006).   DOI   ScienceOn
15 D. M. Engebretson, W. A. A. Macedo, Ivan K. Schuller, P. A. Crowell, and C. Leighton, Phys. Rev. B 71, 184412 (2005).   DOI   ScienceOn
16 T. Hauet, J. A. Borchers, Ph. Mangin, Y. Henry, and S. Mangin, Phys. Rev. Lett. 96, 067207 (2006).   DOI   ScienceOn
17 A. Deac et al., J. Magn. Magn. Mater. 290-291, 42 (2005).   DOI   ScienceOn
18 R. L. Stamps, J. Phys. D: Appl. Phys. 33, R247 (2000).   DOI   ScienceOn
19 J. Nogues et al., Phys. Report. 422, 65 (2005).   DOI   ScienceOn
20 M. Kiwi, J. Magn. Magn. Mater. 234, 584 (2001).   DOI   ScienceOn
21 K. J. Lee et al., J. Appl. Phys. 95, 7423 (2004).   DOI   ScienceOn
22 S.-C. Oh et al., Nature Phys. 5, 898 (2009).   DOI
23 J. H. Moon, W. J. Kim, T. D. Lee, and K.-J. Lee, Phys. Stat. Sol. (b) 244, 4491 (2007).   DOI   ScienceOn
24 S.-K. Kim et al., Appl. Phys. Lett. 86, 052504 (2005).   DOI   ScienceOn
25 A. P. Malozemoff, Phys. Rev. B 35, 3679 (1987)   DOI   ScienceOn
26 A. P. Malozemoff, Phys. Rev. B 37, 7673 (1988).   DOI   ScienceOn
27 P. Miltenyi et al., Phys. Rev. Lett. 84, 4224 (2000).   DOI   ScienceOn
28 U. Nowak et al., Phys. Rev. B 66, 014430 (2002).   DOI   ScienceOn
29 J. Spray and U. Nowak, J. Phys. D: Appl. Phys. 39, 4536 (2006).   DOI   ScienceOn