• 제목/요약/키워드: rough statistical convergence

검색결과 10건 처리시간 0.023초

ROUGH STATISTICAL CONVERGENCE IN 2-NORMED SPACES

  • Arslan, Mukaddes;Dundar, Erdinc
    • 호남수학학술지
    • /
    • 제43권3호
    • /
    • pp.417-431
    • /
    • 2021
  • In this study, we introduced the notions of rough statistical convergence and defined the set of rough statistical limit points of a sequence and obtained statistical convergence criteria associated with this set in 2-normed space. Then, we proved that this set is closed and convex in 2-normed space. Also, we examined the relations between the set of statistical cluster points and the set of rough statistical limit points of a sequence in 2-normed space.

CERTAIN ASPECTS OF ROUGH IDEAL STATISTICAL CONVERGENCE ON NEUTROSOPHIC NORMED SPACES

  • Reena Antal;Meenakshi Chawla;Vijay Kumar
    • Korean Journal of Mathematics
    • /
    • 제32권1호
    • /
    • pp.121-135
    • /
    • 2024
  • In this paper, we have presented rough ideal statistical convergence of sequence on neutrosophic normed spaces as a significant convergence criterion. As neutrosophication can handle partially dependent components, partially independent components and even independent components involved in real-world problems. By examining some properties related to rough ideal convergence in these spaces we have established some equivalent conditions on the set of ideal statistical limit points for rough ideal statistically convergent sequences.

ON ROUGH LACUNARY STATISTICAL CONVERGENCE FOR DOUBLE SEQUENCES IN NEUTROSOPHIC NORMED SPACE

  • Omer Kisi;Mehmet Gurdal
    • 호남수학학술지
    • /
    • 제46권3호
    • /
    • pp.428-451
    • /
    • 2024
  • Within the neutrosophic normed space (𝔑𝔑𝔖), we present the notion of rough lacunary statistical convergence of double sequences in this study. Additionally, we delve into the exploration of rough lacunary statistical cluster points for double sequences in 𝔑𝔑𝔖 and scrutinize the correlation between this set of cluster points and the set of rough lacunary statistical limit points associated with the mentioned convergence.

ON ASYMPTOTICALLY f-ROUGH STATISTICAL EQUIVALENT OF TRIPLE SEQUENCES

  • SUBRAMANIAN, N.;ESI, A.
    • Journal of applied mathematics & informatics
    • /
    • 제37권5_6호
    • /
    • pp.459-467
    • /
    • 2019
  • In this work, via Orlicz functions, we have obtained a generalization of rough statistical convergence of asymptotically equivalent triple sequences a new non-matrix convergence method, which is intermediate between the ordinary convergence and the rough statistical convergence. We also have examined some inclusion relations related to this concept. We obtain the results are non negative real numbers with respect to the partial order on the set of real numbers.

On triple sequence space of Bernstein-Stancu operator of rough Iλ-statistical convergence of weighted g (A)

  • Esi, A.;Subramanian, N.;Esi, Ayten
    • Annals of Fuzzy Mathematics and Informatics
    • /
    • 제16권3호
    • /
    • pp.337-361
    • /
    • 2018
  • We introduce and study some basic properties of rough $I_{\lambda}$-statistical convergent of weight g (A), where $g:{\mathbb{N}}^3{\rightarrow}[0,\;{\infty})$ is a function statisying $g(m,\;n,\;k){\rightarrow}{\infty}$ and $g(m,\;n,\;k){\not{\rightarrow}}0$ as $m,\;n,\;k{\rightarrow}{\infty}$ and A represent the RH-regular matrix and also prove the Korovkin approximation theorem by using the notion of weighted A-statistical convergence of weight g (A) limits of a triple sequence of Bernstein-Stancu polynomials.

The Method to Measure Saliency Values for Salient Region Detection from an Image

  • Park, Seong-Ho;Yu, Young-Jung
    • Journal of information and communication convergence engineering
    • /
    • 제9권1호
    • /
    • pp.55-58
    • /
    • 2011
  • In this paper we introduce an improved method to measure saliency values of pixels from an image. The proposed saliency measure is formulated using local features of color and a statistical framework. In the preprocessing step, rough salient pixels are determined as the local contrast of an image region with respect to its neighborhood at various scales. Then, the saliency value of each pixel is calculated by Bayes' rule using rough salient pixels. The experiments show that our approach outperforms the current Bayes' rule based method.

러프집합과 정보이론을 이용한 대학생역량강화 진단 (Diagnosis by Rough Set and Information Theory in Reinforcing the Competencies of the Collegiate)

  • 박인규
    • 디지털융복합연구
    • /
    • 제12권8호
    • /
    • pp.257-264
    • /
    • 2014
  • 본 논문은 대학생을 대상으로 학생들의 학업 및 취업경쟁력 강화에 필요한 핵심 역량의 도출과 진단에 관한 연구이다. 이러한 데이터의 처리에는 매우 많은 변수로 인한 차원의 증가로 인하여 계산상의 어려움이 수반되어지고 변수의 중복성과 중요도에 있어서 다양한 통계적 관계가 존재한다. 따라서 범주형 데이터의 분류에서 발생하는 애매함이나 불확실성을 처리하기 위하여 러프집합과 정보 엔트로피를 기반으로 불확실성의 척도를 정의하여 학생들의 유사행동을 분석하고, 기존의 통계적인 방법과의 비교우위를 위하여 속성간의 변별력을 비교하였다. 도출된 공통 핵심역량과 전공핵심역량을 이용하여 학생들이 가지고 있는 역량의 정성적인 보유수준과 부족한 역량을 파악할 수 있기 때문에, 대학생활지도와 취업진로지도의 보조자료로 활용이 가능할 뿐만 아니라 대학 적응을 높이고 취업 활성화에 부합될 수 있다고 사료된다.

러프집합을 통한 취업의사결정 분석시스템 (Decision Analysis System for Job Guidance using Rough Set)

  • 이희태;박인규
    • 디지털융복합연구
    • /
    • 제11권10호
    • /
    • pp.387-394
    • /
    • 2013
  • 데이터 마이닝은 예측이나 분석을 위해서 많은 양의 데이터에 존재하는 여러 가지의 관계를 추출하는 과정이라고 할 수 있다. 그러한 데이터에는 매우 많은 변수로 인한 차원의 증가로 인하여 계산상의 어려움이 수반되어지고 변수의 중복성과 중요도에 있어서 다양한 통계적 관계가 존재한다. 따라서 동일하거나 유사한 데이터를 같은 그룹으로 형성하는 클러스터 해석은 데이터 마이닝에서 필수적인 요소이다. 본 연구는 범주형 데이터의 분류에서 발생하는 불확실성의 처리를 위해 러프집합을 이용하여 정보 엔트로피를 이용한 새로운 척도를 정의하고 연구 대상에 대한 유사행동을 분석하는 시스템 구현에 그 의의가 있다. 데이터는 평택공업고등학교에서 채집되었고 이를 토대로 제안된 방법이 학생들의 유사행동에 대한 보다 정확한 결과를 보임을 알 수 있었다. 또한 속성의 개수가 10개 이상인 경우에 기본 방법과의 차이를 보이며 취업의사결정에서 학생들의 의식을 기존 방법보다 효과적으로 반영하였다.