In this study, we introduced the notions of rough statistical convergence and defined the set of rough statistical limit points of a sequence and obtained statistical convergence criteria associated with this set in 2-normed space. Then, we proved that this set is closed and convex in 2-normed space. Also, we examined the relations between the set of statistical cluster points and the set of rough statistical limit points of a sequence in 2-normed space.
In this paper, we introduce rough statistical convergence of difference double sequences in normed linear spaces as an extension of rough convergence. We define the set of rough statistical limit points of a difference double sequence and analyze the results with proofs.
In this paper, we have presented rough ideal statistical convergence of sequence on neutrosophic normed spaces as a significant convergence criterion. As neutrosophication can handle partially dependent components, partially independent components and even independent components involved in real-world problems. By examining some properties related to rough ideal convergence in these spaces we have established some equivalent conditions on the set of ideal statistical limit points for rough ideal statistically convergent sequences.
Within the neutrosophic normed space (𝔑𝔑𝔖), we present the notion of rough lacunary statistical convergence of double sequences in this study. Additionally, we delve into the exploration of rough lacunary statistical cluster points for double sequences in 𝔑𝔑𝔖 and scrutinize the correlation between this set of cluster points and the set of rough lacunary statistical limit points associated with the mentioned convergence.
In this study, we examine rough ${\Delta}\mathcal{I}$-statistical convergence for difference sequences as an extension of rough convergence. We investigate the set of rough ${\Delta}\mathcal{I}$-statistical limit points of a difference sequence and analyze the results with proofs.
In this work, via Orlicz functions, we have obtained a generalization of rough statistical convergence of asymptotically equivalent triple sequences a new non-matrix convergence method, which is intermediate between the ordinary convergence and the rough statistical convergence. We also have examined some inclusion relations related to this concept. We obtain the results are non negative real numbers with respect to the partial order on the set of real numbers.
We introduce and study some basic properties of rough $I_{\lambda}$-statistical convergent of weight g (A), where $g:{\mathbb{N}}^3{\rightarrow}[0,\;{\infty})$ is a function statisying $g(m,\;n,\;k){\rightarrow}{\infty}$ and $g(m,\;n,\;k){\not{\rightarrow}}0$ as $m,\;n,\;k{\rightarrow}{\infty}$ and A represent the RH-regular matrix and also prove the Korovkin approximation theorem by using the notion of weighted A-statistical convergence of weight g (A) limits of a triple sequence of Bernstein-Stancu polynomials.
Journal of information and communication convergence engineering
/
제9권1호
/
pp.55-58
/
2011
In this paper we introduce an improved method to measure saliency values of pixels from an image. The proposed saliency measure is formulated using local features of color and a statistical framework. In the preprocessing step, rough salient pixels are determined as the local contrast of an image region with respect to its neighborhood at various scales. Then, the saliency value of each pixel is calculated by Bayes' rule using rough salient pixels. The experiments show that our approach outperforms the current Bayes' rule based method.
본 논문은 대학생을 대상으로 학생들의 학업 및 취업경쟁력 강화에 필요한 핵심 역량의 도출과 진단에 관한 연구이다. 이러한 데이터의 처리에는 매우 많은 변수로 인한 차원의 증가로 인하여 계산상의 어려움이 수반되어지고 변수의 중복성과 중요도에 있어서 다양한 통계적 관계가 존재한다. 따라서 범주형 데이터의 분류에서 발생하는 애매함이나 불확실성을 처리하기 위하여 러프집합과 정보 엔트로피를 기반으로 불확실성의 척도를 정의하여 학생들의 유사행동을 분석하고, 기존의 통계적인 방법과의 비교우위를 위하여 속성간의 변별력을 비교하였다. 도출된 공통 핵심역량과 전공핵심역량을 이용하여 학생들이 가지고 있는 역량의 정성적인 보유수준과 부족한 역량을 파악할 수 있기 때문에, 대학생활지도와 취업진로지도의 보조자료로 활용이 가능할 뿐만 아니라 대학 적응을 높이고 취업 활성화에 부합될 수 있다고 사료된다.
데이터 마이닝은 예측이나 분석을 위해서 많은 양의 데이터에 존재하는 여러 가지의 관계를 추출하는 과정이라고 할 수 있다. 그러한 데이터에는 매우 많은 변수로 인한 차원의 증가로 인하여 계산상의 어려움이 수반되어지고 변수의 중복성과 중요도에 있어서 다양한 통계적 관계가 존재한다. 따라서 동일하거나 유사한 데이터를 같은 그룹으로 형성하는 클러스터 해석은 데이터 마이닝에서 필수적인 요소이다. 본 연구는 범주형 데이터의 분류에서 발생하는 불확실성의 처리를 위해 러프집합을 이용하여 정보 엔트로피를 이용한 새로운 척도를 정의하고 연구 대상에 대한 유사행동을 분석하는 시스템 구현에 그 의의가 있다. 데이터는 평택공업고등학교에서 채집되었고 이를 토대로 제안된 방법이 학생들의 유사행동에 대한 보다 정확한 결과를 보임을 알 수 있었다. 또한 속성의 개수가 10개 이상인 경우에 기본 방법과의 차이를 보이며 취업의사결정에서 학생들의 의식을 기존 방법보다 효과적으로 반영하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.