
Honam Mathematical J. 43 (2021), No. 3, pp. 417–431

https://doi.org/10.5831/HMJ.2021.43.3.417

ROUGH STATISTICAL CONVERGENCE IN 2-NORMED

SPACES

Mukaddes Arslan∗ and Erdinç Dündar

Abstract. In this study, we introduced the notions of rough statistical

convergence and defined the set of rough statistical limit points of a se-

quence and obtained statistical convergence criteria associated with this
set in 2-normed space. Then, we proved that this set is closed and convex
in 2-normed space. Also, we examined the relations between the set of
statistical cluster points and the set of rough statistical limit points of a

sequence in 2-normed space.

1. Introduction and Background

Throughout the paper, N denotes the set of all positive integers and R
the set of all real numbers. The concept of convergence of a sequence of real
numbers has been extended to statistical convergence independently by Fast
[12] and Schoenberg [28].

The concept of 2-normed spaces was initially introduced by Gähler [13, 14] in
the 1960’s. Since then, this concept has been studied by many authors. Gürdal
and Pehlivan [18] studied statistical convergence, statistical Cauchy sequence
and investigated some properties of statistical convergence in 2-normed spaces.
Sarabadan and Talebi [26] studied statistical convergence and ideal convergence
of sequences of functions in 2-normed spaces. Futhermore, a lot of development
have been made in this area (see [1, 2, 7, 19, 20, 21, 22, 30, 27, 29, 31, 32, 33,
34, 35]).

The idea of rough convergence was first introduced by Phu [23] in finite-
dimensional normed spaces. In [23], he showed that the set LIMrx is bounded,
closed, and convex; and he introduced the notion of rough Cauchy sequence.
He also investigated the relations between rough convergence and other con-
vergence types and the dependence of LIMrx on the roughness degree r. In
another paper [24] related to this subject, he defined the rough continuity of lin-
ear operators and showed that every linear operator f : X → Y is r -continuous
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at every point x ∈ X under the assumption dimY < ∞ and r > 0 where X
and Y are normed spaces. In [25], he extended the results given in [23] to
infinite-dimensional normed spaces. Aytar [5] studied of rough statistical con-
vergence and defined the set of rough statistical limit points of a sequence and
obtained two statistical convergence criteria associated with this set and prove
that this set is closed and convex. Also, Aytar [6] studied that the r-limit set
of the sequence is equal to the intersection of these sets and that r-core of the
sequence is equal to the union of these sets. Recently, Arslan and Dündar [3, 4]
introduced rough convergence and investigated some properties in 2-normed
spaces.

In this paper, we note that our results and proof techniques presented in
this paper are analogues of those in Phu’s [23] paper. Namely, the actual origin
of most of these results and proof techniques is them papers. The following our
theorems and results are the extension of theorems and results in [3, 4, 23].

Now, we recall the some fundamental definitions and notations (See [1, 2,
3, 5, 6, 8, 9, 10, 11, 15, 16, 17, 18, 19, 20, 23, 24, 25, 30, 26]).

Let X be a real vector space of dimension d, where 2 ≤ d < ∞. A 2-norm
on X is a function ∥·, ·∥ : X ×X → R which satisfies the following statements:

(i) ∥x, y∥ = 0 if and only if x and y are linearly dependent.
(ii) ∥x, y∥ = ∥y, x∥.
(iii) ∥αx, y∥ = |α|∥x, y∥, α ∈ R.
(iv) ∥x, y + z∥ ≤ ∥x, y∥+ ∥x, z∥.
As an example of a 2-normed space we may take X = R2 being equipped

with the 2-norm ∥x, y∥ := the area of the parallelogram based on the vectors
x and y which may be given explicitly by the formula

∥x, y∥ = |x1y2 − x2y1|; x = (x1, x2), y = (y1, y2) ∈ R2.

In this study, we suppose X to be a 2-normed space having dimension d;
where 2 ≤ d < ∞. The pair (X, ∥·, ·∥) is then called a 2-normed space.

A sequence (xn) in 2-normed space (X, ∥·, ·∥) is said to be convergent to
L in X if lim

n→∞
∥xn − L, y∥ = 0, for every y ∈ X. In such a case, we write

lim
n→∞

xn = L and call L the limit of (xn).

Example 1.1. Let x = (xn) = ( n
n+1 ,

1
n ) and L = (1, 0). It is clear that

(xn) convergent to L = (1, 0) in 2-normed space X = R2.

Throughout the paper, let r be a nonnegative real number and Rn denotes
the real n-dimensional space with the norm ∥.∥. Consider a sequence x =
(xn) ⊂ Rn.

The sequence x = (xn) is said to be r-convergent to L, denoted by xn
r−→ L

provided that

∀ε > 0 ∃nε ∈ N : n ≥ nε ⇒ ∥xn − L∥ < r + ε.



Rough Statistical Convergence in 2-Normed Spaces 419

The set

LIMrx = {L ∈ Rn : xn
r−→ L}

is called the r-limit set of the sequence x = (xn). A sequence x = (xn) is
said to be r-convergent if LIMrx ̸= ∅. In this case, r is called the convergence
degree of the sequence x = (xn). For r = 0, we get the ordinary convergence.

Let K be a subset of the set of positive integers N, and let us denote the
set {k ∈ K : k ≤ n} by Kn. Then the natural density of K is given by

δ(K) = lim
n→∞

|Kn|
n

,

where |Kn| denotes the number of elements in Kn. Clearly, a finite subset has
natural density zero, and we have δ(Kc) = 1− δ(K) where Kc := N \K is the
complement of K. If K1 ⊆ K2, then δ(K1) ≤ δ(K2).

A sequence x = (xn) is said to be r-statistically convergent to L, denoted

by xn
r−st−→ L, provided that the set

{n ∈ N : ∥xn − L∥ ≥ r + ε}

has natural density zero for ε > 0; or equivalently, if the condition st −
lim sup ∥xn − L∥ ≤ r is satisfied. In addition, we can write xn

r−st−→ L if and
only if, the inequality ∥xn −L∥ < r+ ε holds for every ε > 0 and almost all n.

Let (xn) be a sequence in (X, ∥., .∥) 2-normed linear space and r be a non-
negative real number. (xn) is said to be rough convergent (r-convergent) to L

denoted by xn
∥.,.∥−→r L if

∀ε > 0,∃nε ∈ N : n ≥ nε ⇒ ∥xn − L, z∥ < r + ε(1)

or equivalently, for every z ∈ X, if

lim sup ∥xn − L, z∥ ≤ r.(2)

If (1) holds L is an r-limit point of (xn), which is usually no more unique
(for r > 0). So, we have to consider the so-called r-limit set (or shortly r-limit)
of (xn) defined by

LIMr
2x := {L ∈ X : xn

∥.,.∥−→r L}.(3)

The sequence (xn) is said to be rough convergent if LIMr
2x ̸= ∅. In this case, r is

called a convergence degree of (xn). For r = 0 we have the classical convergence
in 2-normed space again. But our proper interest is case r > 0. There are
several reasons for this interest. For instance, since an orginally convergent
sequence (yn) (with yn → L) in 2-normed space often cannot be determined
(i.e., measured or calculated) exactly, one has to do with an approximated
sequence (xn) satisfying ∥xn − yn, z∥ ≤ r for all n and for every z ∈ X, where
r > 0 is an upper bound of approximation error. Then, (xn) is no more
convergent in the classical sense, but for every z ∈ X,

∥xn − L, z∥ ≤ ∥xn − yn, z∥+ ∥yn − L, z∥ ≤ r + ∥yn − L, z∥
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implies that is r-convergent in the sense of (1).

Example 1.2. Let X = R2. The sequence x = (xn) = ((−1)n, 0) is not
convergent in (X, ∥., .∥) but it is rough convergent for every z ∈ X. It is clear
that

LIMr
2x = {y = (y1, y2) ∈ X : |y1| ≤ r − 1, |y2| ≤ r}.

In other words

LIMr
2x =

{
∅ , if r < 1

Br((−1, 0)) ∩Br((1, 0)) , if r ≥ 1,

where Br(L) := {y ∈ X : ∥y − L, z∥ ≤ r}.

Lemma 1.3 ([3], Theorem 2.2). Let (X, ∥., .∥) be a 2-normed space and
consider a sequence x = (xn) ∈ X. The sequence (xn) is bounded if and only if
there exists an r ≥ 0 such that LIMr

2x ̸= ∅. For all r > 0, a bounded sequence
(xn) is always contains a subsequence xnk

with

LIM
(xnk

),r

2 xnk
̸= ∅.

Lemma 1.4 ([3], Theorem 2.3). Let (X, ∥., .∥) be a 2-normed space and
consider a sequence x = (xn) ∈ X. For all r ≥ 0, the r-limit set LIMr

2x of an
arbitrary sequence (xn) is closed.

Lemma 1.5 ([3], Theorem 2.4). Let (X, ∥., .∥) be a 2-normed space and
consider a sequence x = (xn) ∈ X. If y0 ∈ LIMr0

2 x and y1 ∈ LIMr1
2 x, then

yα := (1− α)y0 + αy1 ∈ LIM
(1−α)r0+αr1
2 x, for α ∈ [0, 1].

2. MAIN RESULTS

Definition 2.1. Let (X, ∥., .∥) be a 2-normed space. A sequence x = (xn)
in X said to be rough statistically convergent (r2st-convergent) to L, denoted

by xn
∥.,.∥−→r2st L, provided that the set

{n ∈ N : ∥xn − L, z∥ ≥ r + ε}

has natural density zero, for every ε > 0 and each nonzero z ∈ X; or equiva-
lently, if the condition

st− lim sup ∥xn − L, z∥ ≤ r

is satisfied. In addition, we can write xn
∥.,.∥−→r2st L, if and only if, the inequality

∥xn − L, z∥ < r + ε

holds for every ε > 0, each nonzero z ∈ X and almost all n.
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In this convergence, r is called the statistical convergence degree. For r = 0,
rough statistically convergent coincide ordinary statistical convergence.

Similar to the idea of classical rough convergence, the idea of rough statis-
tical convergence of a sequence can be interpreted as follows.

Suppose that a sequence y = (yn) inX is statistically convergent and cannot
be measured or calculated exactly, on one has to do with an approximated (or
statistically approximated) sequence x = (xn) in X satisfying

∥xn − yn, z∥ ≤ r

for all n and each nonzero z ∈ X, (or for almost all n, that is,

δ(n ∈ N : ∥xn − yn, z∥ ≥ r) = 0.)

Then, the sequence x = (xn) is not statistically convergent anymore, but since
the inclusion for each nonzero z ∈ X

{n ∈ N : ∥yn − L′, z∥ ≥ ε} ⊇ {n ∈ N : ∥xn − L′, z∥ ≥ r + ε}(4)

holds and we have

δ({n ∈ N : ∥yn − L′, z∥ ≥ r + ε}) = 0,

and so
δ({n ∈ N : ∥xn − L′, z∥ ≥ r + ε}) = 0,

that is, the sequence x in X is r-statistically convergent in 2-normed space
(X, ∥., .∥).

In general, the rough statistical limit of a sequence x = (xn) may not be
unique for the roughness degree r > 0. So, we have to consider the so-called
r-statistically limit set of the sequence x in X, which is defined by

st− LIMr
2x := {L ∈ X : xn

∥.,.∥−→r2st L}.(5)

The sequence x is said to be r-statistically convergent provided that st −
LIMr

2x ̸= ∅.
We have that LIMr

2x = ∅ for an unbounded sequence x = (xn). But such a
sequence might be rough statistically convergent. For instance, define

xn :=

{
((−1)n, 0) , if n ̸= k2 (k ∈ N)
(n, n) , otherwise

(6)

in X = R2. Because the set {1, 4, 9, 16, ...} has natural density zero, we have

st− LIMr
2x :=

{
∅ , if r < 1,

Br((−1, 0)) ∩Br((1, 0)) , if r ≥ 1,

and LIMr
2x = ∅, for all r ≥ 0.

From the example above, we have LIMr
2x = ∅ but st−LIMr

2x ̸= ∅. Because
a finite set of natural numbers has natural density zero, LIMr

2x ̸= ∅ implies
st− LIMr

2x ̸= ∅ and so, we have

LIMr
2x ⊆ st− LIMr

2x.
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That is, we have the fact

{r ≥ 0 : LIMr
2x ̸= ∅} ⊆ {r ≥ 0 : st− LIMr

2x ̸= ∅}
and so

inf{r ≥ 0 : LIMr
2x ̸= ∅} ≥ inf{r ≥ 0 : st− LIMr

2x ̸= ∅}.
It also directly yields

diam(LIMr
2x) ≤ diam(st− LIMr

2x).

As mentioned above, we cannot say that the rough statistical limit of a
sequence is unique for the degree of roughness r > 0. The following conclusion
related to this fact.

Theorem 2.2. Let x = (xn) be a sequence in (X, ∥., .∥). Then, we have

diam(st− LIMr
2x) ≤ 2r.

Also, generally, diam(st− LIMr
2x) has no smaller bound.

Proof. Suppose that diam(st − LIMr
2x) > 2r. Then, there exist y, t ∈

st − LIMr
2x such that ∥y − t, z∥ > 2r, for each nonzero z ∈ X. Choose

ε ∈
(
0, ∥y−t,z∥

2 − r
)
. Since y, t ∈ st− LIMr

2x we have δ(A1) = 0 and δ(A2) = 0,
where

A1 = {n ∈ N : ∥xn − y, z∥ ≥ r + ε} and A2 = {n ∈ N : ∥xn − t, z∥ ≥ r + ε}
for every ε > 0 and each nonzero z ∈ X. By the properties of natural density,
we have δ(Ac

1 ∩ Ac
2) = 1 and so for all n ∈ Ac

1 ∩ Ac
2, and each nonzero z ∈ X,

we can write

∥y − t, z∥ ≤ ∥xn − y, z∥+ ∥xn − t, z∥ < 2(r + ε) = ∥y − t, z∥
which is a contradiction.

Now let’s do the second part of the proof. Let a sequence x = (xn) in
(X, ∥., .∥) such that st − limx = L. Then, for every ε > 0 and each nonzero
z ∈ X, we can write

δ({n ∈ N : ∥xn − L, z∥ ≥ ε}) = 0.

So, we have

∥xn − y, z∥ ≤ ∥xn − L, z∥+ ∥L− y, z∥ ≤ ∥xn − L, z∥+ r

for each y ∈ Br(L) := {y ∈ X : ∥y − L, z∥ ≤ r} and for each nonzero z ∈ X.
Then, for every ε > 0 and each nonzero z ∈ X we get

∥xn − y, z∥ < r + ε,

for each n ∈ {n ∈ N : ∥xn − L, z∥ < ε}. Since the sequence x is statistically
convergent to L, for each nonzero z ∈ X, we have

δ({n ∈ N : ∥xn − L, z∥ < ε}) = 1.

Hence, we have y ∈ st− LIMr
2x. As a result, we can write

st− LIMr
2x = Br(L).
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Since diam(Br(L)) = 2r, this shows that in general, the upper bound 2r of the
diameter of the set st− LIMr

2x can no longer be reduced.

By [[3], Theorem 2.2], there exists a nonnegative real number r such that
LIMr

2x ̸= ∅ for a bounded sequence. Because the fact LIMr
2x ̸= ∅ implies

st− LIMr
2x ̸= ∅, we have the following result.

Result 2.3. If a sequence x = (xn) is bounded in (X, ∥., .∥), then there
exists a nonnegative real number r such that st− LIMr

2x ̸= ∅.

The opposite implication of the above result is not valid. If we let the se-
quence to be statistically bounded in 2-normed space, then we have the converse
of Result 2.3. Hence, we give the following theorem.

Theorem 2.4. A sequence x = (xn) is statistically bounded in (X, ∥., .∥) if
and only if there exists a nonnegative real number r such that st−LIMr

2x ̸= ∅.

Proof. Let x = (xn) be a statistically bounded sequence. Then, there exists
a positive real number M such that for each nonzero z ∈ X,

δ({n ∈ N : ∥xn, z∥ ≥ M}) = 0.

Now, we let r′ := sup{∥xn, z∥ : n ∈ Ac}, where A := {n ∈ N : ∥xn, z∥ ≥ M},
for each nonzero z ∈ X. Then, the set st − LIMr′

2 x contains the origin of X.

Therefore, we have st − LIMr′

2 x ̸= ∅. If st − LIMr
2x ̸= ∅, for some r ≥ 0, then

there exists an L such that L ∈ st− LIMr
2x, that is,

δ({n ∈ N : ∥xn − L, z∥ ≥ r + ε}) = 0,

for each ε > 0 and each nonzero z ∈ X. Then, we say that almost all xn’s
are contained in some ball with any radius grater than r. So the sequence x is
statistically bounded.

By [[3], Proposition 2.1], we know that if x′ is a subsequence of x = (xn),
then LIMr

2x ⊆ LIMr
2x

′. But this fact does not hold in the theory of statistical
convergence. For example, define

xn :=

{
(n, n) , if n = k3, (k ∈ N)

(0, (−1)n) , otherwise,

in X = R2. Then, the sequence x′ := ((1, 1), (8, 8), (27, 27), · · · ) is a sub-
sequence of x = (xn). We have st − LIMr

2x = Br((0,−1)) ∩ Br((0, 1)) and
st− LIMr

2x
′ = ∅, for r ≥ 1.

So we can present the statistical analogue of Arslan and Dündar’s result
[[3], Proposition 2.1] in the following theorem without proof.

Theorem 2.5. If x′ = (xnk
) is a nonthin subsequence of x = (xn) in

(X, ∥., .∥), then
st− LIMr

2x ⊆ st− LIMr
2x

′.

Now, we give the topological and geometrical properties of the r-statistical
limit set of a sequence.
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Theorem 2.6. The r-statistical limit set of a sequence x = (xn) is closed
in (X, ∥., .∥).

Proof. If st−LIMr
2x = ∅, proof is clear. Let st−LIMr

2x ̸= ∅. Then, we can
choose a sequence

(yn) ⊆ st− LIMr
2x

such that yn → L′ for n → ∞. If we show that L′ ∈ st−LIMr
2x, then the proof

will be complete.
Let ε > 0 be given. Because yn → L′, there exists an n ε

2
∈ N such that

∥yn − L′, z∥ <
ε

2
,

for all n > n ε
2
and each nonzero z ∈ X. Now choose an n0 ∈ N such that

n0 > n ε
2
. Then, we can write ∥yn0

− L′, z∥ < ε
2 . On the other hand, since

(yn) ⊆ st− LIMr
2x, we have yn0

∈ st− LIMr
2x, that is,

δ({n ∈ N : ∥xn − yn0
, z∥ ≥ r +

ε

2
}) = 0.(7)

Now let us show that the inclusion

{n ∈ N : ∥xn − L′, z∥ < r + ε} ⊇ {n ∈ N : ∥xn − yn0
, z∥ < r +

ε

2
}(8)

holds for each nonzero z ∈ X. Let k ∈ {n ∈ N : ∥xn − yn0
, z∥ < r+ ε

2}. Hence,
for each nonzero z ∈ X we have

∥xk − yn0
, z∥ < r +

ε

2

and so

∥xk − L′, z∥ ≤ ∥xk − yn0
, z∥+ ∥yn0

− L′, z∥ < r + ε,

that is,

k ∈ {n ∈ N : ∥xn − L′, z∥ < r + ε},
which proves (8). From (7), we can say that the set on the right-hand side of
(8) has natural density 1. Then the natural density of the set on the left-hand
side of (8) is equal to 1. So for each nonzero z ∈ X, we get

δ({n ∈ N : ∥xn − L′, z∥ ≥ r + ε}) = 0,

which completes the proof.

Theorem 2.7. The r-statistical limit set of a sequence x = (xn) is convex
in (X, ∥., .∥).

Proof. Let y0, y1 ∈ st − LIMr
2x for the sequence x = (xn) and let ε > 0 be

given. For each nonzero z ∈ X, define

A1 := {n ∈ N : ∥xn − y0, z∥ ≥ r+ ε} and A2 := {n ∈ N : ∥xn − y1, z∥ ≥ r+ ε}.

Since y0, y1 ∈ st− LIMr
2x, we have δ(A1) = δ(A2) = 0. Therefore, we have

∥xn − [(1− λ)y0 + λy1], z∥ = ∥(1− λ)(xn − y0) + λ(xn − y1), z∥ < r + ε
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for each n ∈ Ac
1 ∩ Ac

2, each λ ∈ [0, 1] and for each nonzero z ∈ X. Since,
δ(Ac

1 ∩Ac
2) = 1, we have

δ({n ∈ N : ∥xn − [(1− λ)(y0) + λy1], z∥ ≥ r + ε}) = 0,

that is,

[(1− λ)(y0) + λy1] ∈ st− LIMr
2x,

for each nonzero z ∈ X. This proves the convexity of the set st− LIMr
2x.

Theorem 2.8. Let (X, ∥., .∥) be a 2-normed space and r > 0. Then, a
sequence x = (xn) is r-statistically convergent to L in X iff there exists a
sequence y = (yn) in X such that st− lim y = L and ∥xn − yn, z∥ ≤ r, for each
n ∈ N and each nonzero z ∈ X.

Proof. Let xn
∥.,.∥−→r2st L. Then, for each nonzero z ∈ X we have

st− lim sup ∥xn − L, z∥ ≤ r.(9)

Now, for each nonzero z ∈ X we define

yn :=

{
L , if∥xn − L, z∥ ≤ r

xn + r L−xn

∥xn−L,z∥ , otherwise.
(10)

Then, for each nonzero z ∈ X we can write

∥yn − L, z∥ :=

{
0 , if∥xn − L, z∥ ≤ r

∥xn − L, z∥ − r , otherwise,
(11)

and by definition of yn, we have

∥xn − yn, z∥ ≤ r, for all n ∈ N.

By (9) and the definition of yn, for all n ∈ N we have st−lim sup ∥yn−L, z∥ = 0,
which implies that st− lim yn = L.

Conversely, since st− lim yn = L, we have

δ({n ∈ N : ∥yn − L, z∥ ≥ ε}) = 0,

for each ε > 0 and each nonzero z ∈ X and so, it is easy to see that the
inclusion

{n ∈ N : ∥yn − L, z∥ ≥ ε} ⊇ {n ∈ N : ∥xn − L, z∥ ≥ r + ε}

holds. Since

δ({n ∈ N : ∥yn − L, z∥ ≥ ε}) = 0,

for each nonzero z ∈ X, we have

δ({n ∈ N : ∥xn − L, z∥ ≥ r + ε}) = 0,

which completes the proof.
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If we replace the condition

“∥xn − yn, z∥ ≤ r, for all n ∈ N and for each nonzero z ∈ X, ”

in the hypothesis of the above theorem with the condition

“δ({n ∈ N : ∥xn − yn, z∥ > r}) = 0”,

then the theorem will also be valid.

Definition 2.9. Let (X, ∥., .∥) be a 2-normed space. c ∈ X is called a
statistical cluster point of a sequence x = (xn) in X provided that the natural
density of the set

{n ∈ N : ∥xn − c, z∥ < ε}
is different from zero for every ε > 0 and each nonzero z ∈ X. We denote the
set of all statistical cluster points of the sequence x by Γ2

x.

Now, we give an important property of the set of rough statistical limit
points of a sequence.

Lemma 2.10. For an arbitrary c ∈ Γ2
x of a sequence x = (xn) in (X, ∥., .∥),

we have ∥L− c, z∥ ≤ r, for all L ∈ st− LIMr
2x and each nonzero z ∈ X.

Proof. Assume on the contrary that there exists a point c ∈ Γ2
x and L ∈

st− LIMr
2x such that

∥L− c, z∥ > r,

for each nonzero z ∈ X. Define ε := ∥L−c,z∥−r
3 . Then, for each nonzero z ∈ X

we can write

{n ∈ N : ∥xn − L, z∥ ≥ r + ε} ⊇ {n ∈ N : ∥xn − c, z∥ < ε}.(12)

Since c ∈ Γ2
x, for each nonzero z ∈ X we have

δ({n ∈ N : ∥xn − c, z∥ < ε}) ̸= 0.

Hence by (12), for each nonzero z ∈ X we have

δ({n ∈ N : ∥xn − L, z∥ ≥ r + ε}) ̸= 0,

which contradicts the fact L ∈ st− LIMr
2x.

Now we give two statistical convergence criteria associated with the rough
statistical limit set.

Theorem 2.11. A sequence x = (xn) statistically converges to L in (X, ∥., .∥)
if and only if st− LIMr

2x = Br(L).

Proof. We have proved the necessity part of this theorem in the proof of
Theorem 2.2.

Sufficiency. Since st − LIMr
2x = Br(L) ̸= ∅, then by Theorem 2.4 we can

say that the sequence x is statistically bounded. Assume on the contrary that
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the sequence x has another statistical cluster point L′ different from L. Then,
the point

L := L+
r

∥L− L′, z∥
(L− L′)

satisfies

∥L− L′, z∥ =

(
r

∥L− L′, z∥
+ 1

)
∥L− L′, z∥ = r + ∥L− L′, z∥ > r.

Since L′ is a statistical cluster point of the sequence x, by Lemma 2.10 this
inequality implies that L ̸∈ st−LIMr

2x. This contradicts the fact ∥L−L, z∥ = r
and st−LIMr

2x = Br(L). Therefore, L is the unique statistical cluster point of
the sequence x and so, we can say that the sequence x is statistically convergent
to L.

Theorem 2.12. Let (X, ∥., .∥) be a strictly convex space and x = (xn) be
a sequence in this space. If there t1, t2 ∈ st−LIMr

2x such that ∥t1− t2, z∥ = 2r,
for each nonzero z ∈ X, this sequence is statistically convergent to 1

2 (t1 + t2).

Proof. Assume that t ∈ Γ2
x. Then, t1, t2 ∈ st− LIMr

2x implies that

∥t1 − t, z∥ ≤ r and ∥t2 − t, z∥ ≤ r(13)

for each nonzero z ∈ X, by Lemma 2.10. On the other hand, for each nonzero
z ∈ X, we have

2r = ∥t1 − t2, z∥ ≤ ∥t1 − t, z∥+ ∥t2 − t, z∥,(14)

and so

∥t1 − t, z∥ = ∥t2 − t, z∥ = r,

combining the inequalities (13) and (14). Since for each nonzero z ∈ X,

1

2
(t2 − t1) =

1

2
[(t− t1) + (t2 − t)](15)

and ∥t1 − t2, z∥ = 2r, we have

∥1
2
(t2 − t1), z∥ = r.

By the strict convexity of the space and from the equality (15), for each nonzero
z ∈ X we get

1

2
(t2 − t1) = t− t1 = t2 − t,

which implies that

t =
1

2
(t1 + t2).

Hence, t is the unique statistical cluster point of the sequence x = (xn). On the
other hand, the assumption t1, t2 ∈ st− LIMr

2x implies that st− LIMr
2x ̸= ∅.
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By Theorem 2.4, the sequence x is statistically bounded. Consequently, the
sequence x is statistically convergent, i.e.,

st− limx =
1

2
(t1 + t2).

The following theorem is the statistical extension of [[4], Theorem 2.5].

Theorem 2.13. Let (X, ∥., .∥) be a 2-normed space.
(i) If c ∈ Γ2

x then,

st− LIMr
2x ⊆ Br(c).(16)

(ii)

st− LIMr
2x =

⋂
c∈Γ2

x

Br(c) = {L ∈ X : Γ2
x ⊆ Br(L)}.(17)

Proof. (i) Let L ∈ st− LIMr
2x and c ∈ Γ2

x. Then, by Lemma 2.10, we have

∥L− c, z∥ ≤ r,

otherwise we get

δ({n ∈ N : ∥xn − L, z∥ ≥ r + ε}) ̸= 0,

for ε := ∥L−c,z∥−r
3 and each nonzero z ∈ X. This contradicts the fact L ∈

st− LIMr
2x.

(ii) By the inclusion (16), we can write

st− LIMr
2x ⊆

⋂
c∈Γ2

x

Br(c).(18)

Now let y ∈
⋂

c∈Γ2
x

Br(c). Then for each nonzero z ∈ X, we have

∥y − c, z∥ ≤ r,

for all c ∈ Γ2
x, which is equivalent to

Γ2
x ⊆ Br(y),

that is, ⋂
c∈Γ2

x

Br(c) ⊆ {L ∈ X : Γ2
x ⊆ Br(L)}.(19)

Now let y ̸∈ st−LIMr
2x. Then, there exists an ε > 0 such that for each nonzero

z ∈ X,

δ({n ∈ N : ∥xn − y, z∥ ≥ r + ε}) ̸= 0,

which implies the existence of a statistical cluster points c of the sequence x
with

∥y − c, z∥ ≥ r + ε,
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that is, Γ2
x ̸⊆ Br(y) and

y ̸∈ {L ∈ X : Γ2
x ⊆ Br(L)}.

Hence, y ∈ st− LIMr
2x follows from

y ∈ {L ∈ X : Γ2
x ⊆ Br(L)},

that is,

{L ∈ X : Γ2
x ⊆ Br(L)} ⊆ st− LIMr

2x.(20)

Therefore, the inclusions (18)-(20) ensure that (17) holds.

We end this work by giving the relation between the set of statistical cluster
points and the set of rough statistical limit points of a sequence.

Theorem 2.14. Let x = (xn) be a statistically bounded sequence in
(X, ∥., .∥). If r = diam(Γ2

x), then we have

Γ2
x ⊆ st− LIMr

2x.

Proof. Let c ̸∈ st− LIMr
2x. Then there exists an ε′ > 0 such that, for each

nonzero z ∈ X

δ({n ∈ N : ∥xn − c, z∥ ≥ r + ε′}) ̸= 0.(21)

Since the sequence is statistically bounded and from the inequality (21), there
exists another statistical cluster point c′ such that, for each nonzero z ∈ X,

∥c− c′, z∥ > r + ε̃,

where ε̃ := ε′

2 . So we get diam(Γ2
x) > r + ε̃, which proves the theorem.
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