ROUGH STATISTICAL CONVERGENCE IN 2-NORMED SPACES

Mukaddes Arslan* and Erdinç Dündar

Abstract. In this study, we introduced the notions of rough statistical convergence and defined the set of rough statistical limit points of a sequence and obtained statistical convergence criteria associated with this set in 2-normed space. Then, we proved that this set is closed and convex in 2-normed space. Also, we examined the relations between the set of statistical cluster points and the set of rough statistical limit points of a sequence in 2-normed space.

1. Introduction and Background

Throughout the paper, \mathbb{N} denotes the set of all positive integers and \mathbb{R} the set of all real numbers. The concept of convergence of a sequence of real numbers has been extended to statistical convergence independently by Fast [12] and Schoenberg [28].

The concept of 2-normed spaces was initially introduced by Gähler [13, 14] in the 1960's. Since then, this concept has been studied by many authors. Gürdal and Pehlivan [18] studied statistical convergence, statistical Cauchy sequence and investigated some properties of statistical convergence in 2-normed spaces. Sarabadan and Talebi [26] studied statistical convergence and ideal convergence of sequences of functions in 2-normed spaces. Futhermore, a lot of development have been made in this area (see [1, 2, 7, 19, 20, 21, 22, 30, 27, 29, 31, 32, 33, 34, 35]).

The idea of rough convergence was first introduced by Phu [23] in finite-dimensional normed spaces. In [23], he showed that the set $\text{LIM}^r x$ is bounded, closed, and convex; and he introduced the notion of rough Cauchy sequence. He also investigated the relations between rough convergence and other convergence types and the dependence of $\text{LIM}^r x$ on the roughness degree r. In another paper [24] related to this subject, he defined the rough continuity of linear operators and showed that every linear operator $f: X \to Y$ is r-continuous

Received February 25, 2021. Accepted June 7, 2021.

²⁰¹⁰ Mathematics Subject Classification. 40A05, 40A35.

Key words and phrases. Rough convergence, Statistical convergence, Rough statistical convergence, 2-normed space.

^{*}Corresponding author

at every point $x \in X$ under the assumption $\dim Y < \infty$ and r > 0 where X and Y are normed spaces. In [25], he extended the results given in [23] to infinite-dimensional normed spaces. Aytar [5] studied of rough statistical convergence and defined the set of rough statistical limit points of a sequence and obtained two statistical convergence criteria associated with this set and prove that this set is closed and convex. Also, Aytar [6] studied that the r-limit set of the sequence is equal to the intersection of these sets and that r-core of the sequence is equal to the union of these sets. Recently, Arslan and Dündar [3, 4] introduced rough convergence and investigated some properties in 2-normed spaces.

In this paper, we note that our results and proof techniques presented in this paper are analogues of those in Phu's [23] paper. Namely, the actual origin of most of these results and proof techniques is them papers. The following our theorems and results are the extension of theorems and results in [3, 4, 23].

Now, we recall the some fundamental definitions and notations (See [1, 2, 3, 5, 6, 8, 9, 10, 11, 15, 16, 17, 18, 19, 20, 23, 24, 25, 30, 26]).

Let X be a real vector space of dimension d, where $2 \le d < \infty$. A 2-norm on X is a function $\|\cdot,\cdot\|: X\times X\to \mathbb{R}$ which satisfies the following statements:

- (i) ||x,y|| = 0 if and only if x and y are linearly dependent.
- (ii) ||x,y|| = ||y,x||.
- (iii) $\|\alpha x, y\| = |\alpha| \|x, y\|, \ \alpha \in \mathbb{R}.$
- (iv) $||x, y + z|| \le ||x, y|| + ||x, z||$.

As an example of a 2-normed space we may take $X = \mathbb{R}^2$ being equipped with the 2-norm ||x,y|| := the area of the parallelogram based on the vectors x and y which may be given explicitly by the formula

$$||x,y|| = |x_1y_2 - x_2y_1|; \quad x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2.$$

In this study, we suppose X to be a 2-normed space having dimension d; where $2 \le d < \infty$. The pair $(X, \|\cdot, \cdot\|)$ is then called a 2-normed space.

A sequence (x_n) in 2-normed space $(X, \|\cdot, \cdot\|)$ is said to be convergent to L in X if $\lim_{n\to\infty} \|x_n - L, y\| = 0$, for every $y \in X$. In such a case, we write $\lim_{n\to\infty} x_n = L$ and call L the limit of (x_n) .

Example 1.1. Let $x = (x_n) = (\frac{n}{n+1}, \frac{1}{n})$ and L = (1,0). It is clear that (x_n) convergent to L = (1,0) in 2-normed space $X = \mathbb{R}^2$.

Throughout the paper, let r be a nonnegative real number and \mathbb{R}^n denotes the real n-dimensional space with the norm $\|.\|$. Consider a sequence $x = (x_n) \subset \mathbb{R}^n$

The sequence $x = (x_n)$ is said to be r-convergent to L, denoted by $x_n \stackrel{r}{\longrightarrow} L$ provided that

$$\forall \varepsilon > 0 \ \exists n_{\varepsilon} \in \mathbb{N} : \ n \ge n_{\varepsilon} \Rightarrow ||x_n - L|| < r + \varepsilon.$$

The set

$$LIM^r x = \{ L \in \mathbb{R}^n : x_n \stackrel{r}{\longrightarrow} L \}$$

is called the r-limit set of the sequence $x = (x_n)$. A sequence $x = (x_n)$ is said to be r-convergent if $\text{LIM}^r x \neq \emptyset$. In this case, r is called the convergence degree of the sequence $x = (x_n)$. For r = 0, we get the ordinary convergence.

Let K be a subset of the set of positive integers \mathbb{N} , and let us denote the set $\{k \in K : k \leq n\}$ by K_n . Then the natural density of K is given by

$$\delta(K) = \lim_{n \to \infty} \frac{|K_n|}{n},$$

where $|K_n|$ denotes the number of elements in K_n . Clearly, a finite subset has natural density zero, and we have $\delta(K^c) = 1 - \delta(K)$ where $K^c := \mathbb{N} \setminus K$ is the complement of K. If $K_1 \subseteq K_2$, then $\delta(K_1) \leq \delta(K_2)$.

A sequence $x = (x_n)$ is said to be r-statistically convergent to L, denoted by $x_n \xrightarrow{r-st} L$, provided that the set

$${n \in \mathbb{N} : ||x_n - L|| \ge r + \varepsilon}$$

has natural density zero for $\varepsilon > 0$; or equivalently, if the condition $st - \limsup ||x_n - L|| \le r$ is satisfied. In addition, we can write $x_n \stackrel{r-st}{\longrightarrow} L$ if and only if, the inequality $||x_n - L|| < r + \varepsilon$ holds for every $\varepsilon > 0$ and almost all n.

Let (x_n) be a sequence in $(X, \|., .\|)$ 2-normed linear space and r be a non-negative real number. (x_n) is said to be rough convergent (r-convergent) to L denoted by $x_n \xrightarrow{\|...\|}_r L$ if

(1)
$$\forall \varepsilon > 0, \exists n_{\varepsilon} \in \mathbb{N} : n \ge n_{\varepsilon} \Rightarrow ||x_n - L, z|| < r + \varepsilon$$

or equivalently, for every $z \in X$, if

$$(2) \qquad \lim \sup \|x_n - L, z\| \le r.$$

If (1) holds L is an r-limit point of (x_n) , which is usually no more unique (for r > 0). So, we have to consider the so-called r-limit set (or shortly r-limit) of (x_n) defined by

(3)
$$LIM_2^r x := \{ L \in X : x_n \xrightarrow{\| \dots \|} L \}.$$

The sequence (x_n) is said to be rough convergent if $\mathrm{LIM}_2^r x \neq \emptyset$. In this case, r is called a convergence degree of (x_n) . For r=0 we have the classical convergence in 2-normed space again. But our proper interest is case r>0. There are several reasons for this interest. For instance, since an originally convergent sequence (y_n) (with $y_n \to L$) in 2-normed space often cannot be determined (i.e., measured or calculated) exactly, one has to do with an approximated sequence (x_n) satisfying $||x_n - y_n, z|| \leq r$ for all n and for every $z \in X$, where r>0 is an upper bound of approximation error. Then, (x_n) is no more convergent in the classical sense, but for every $z \in X$,

$$||x_n - L, z|| \le ||x_n - y_n, z|| + ||y_n - L, z|| \le r + ||y_n - L, z||$$

implies that is r-convergent in the sense of (1).

Example 1.2. Let $X = \mathbb{R}^2$. The sequence $x = (x_n) = ((-1)^n, 0)$ is not convergent in $(X, \|., .\|)$ but it is rough convergent for every $z \in X$. It is clear that

$$LIM_2^r x = \{ y = (y_1, y_2) \in X : |y_1| \le r - 1, |y_2| \le r \}.$$

In other words

$$LIM_2^r x = \begin{cases} \emptyset &, & if \quad r < 1\\ \overline{B}_r((-1,0)) \cap \overline{B}_r((1,0)) &, & if \quad r \ge 1, \end{cases}$$

where $\overline{B}_r(L) := \{ y \in X : ||y - L, z|| \le r \}.$

Lemma 1.3 ([3], Theorem 2.2). Let (X, ||.,.||) be a 2-normed space and consider a sequence $x = (x_n) \in X$. The sequence (x_n) is bounded if and only if there exists an $r \geq 0$ such that $\text{LIM}_2^r x \neq \emptyset$. For all r > 0, a bounded sequence (x_n) is always contains a subsequence x_{n_k} with

$$LIM_2^{(x_{n_k}),r} x_{n_k} \neq \emptyset.$$

Lemma 1.4 ([3], Theorem 2.3). Let $(X, \|.,.\|)$ be a 2-normed space and consider a sequence $x = (x_n) \in X$. For all $r \geq 0$, the r-limit set $LIM_2^r x$ of an arbitrary sequence (x_n) is closed.

Lemma 1.5 ([3], Theorem 2.4). Let $(X, \|., .\|)$ be a 2-normed space and consider a sequence $x = (x_n) \in X$. If $y_0 \in LIM_2^{r_0}x$ and $y_1 \in LIM_2^{r_1}x$, then

$$y_{\alpha} := (1 - \alpha)y_0 + \alpha y_1 \in LIM_2^{(1 - \alpha)r_0 + \alpha r_1} x, \text{ for } \alpha \in [0, 1].$$

2. MAIN RESULTS

Definition 2.1. Let $(X, \|., .\|)$ be a 2-normed space. A sequence $x = (x_n)$ in X said to be rough statistically convergent $(r_2st\text{-convergent})$ to L, denoted by $x_n \xrightarrow{\|., .\|}_{r_2st} L$, provided that the set

$$\{n \in \mathbb{N} : ||x_n - L, z|| > r + \varepsilon\}$$

has natural density zero, for every $\varepsilon > 0$ and each nonzero $z \in X$; or equivalently, if the condition

$$st - \limsup ||x_n - L, z|| \le r$$

is satisfied. In addition, we can write $x_n \xrightarrow{\|\cdot,\cdot\|}_{r_2st} L$, if and only if, the inequality

$$||x_n - L, z|| < r + \varepsilon$$

holds for every $\varepsilon > 0$, each nonzero $z \in X$ and almost all n.

In this convergence, r is called the statistical convergence degree. For r=0, rough statistically convergent coincide ordinary statistical convergence.

Similar to the idea of classical rough convergence, the idea of rough statistical convergence of a sequence can be interpreted as follows.

Suppose that a sequence $y = (y_n)$ in X is statistically convergent and cannot be measured or calculated exactly, on one has to do with an approximated (or statistically approximated) sequence $x = (x_n)$ in X satisfying

$$||x_n - y_n, z|| \le r$$

for all n and each nonzero $z \in X$, (or for almost all n, that is,

$$\delta(n \in \mathbb{N} : ||x_n - y_n, z|| \ge r) = 0.$$

Then, the sequence $x=(x_n)$ is not statistically convergent anymore, but since the inclusion for each nonzero $z \in X$

$$(4) \qquad \{n \in \mathbb{N} : \|y_n - L', z\| \ge \varepsilon\} \supseteq \{n \in \mathbb{N} : \|x_n - L', z\| \ge r + \varepsilon\}$$

holds and we have

$$\delta(\{n \in \mathbb{N} : ||y_n - L', z|| > r + \varepsilon\}) = 0,$$

and so

$$\delta(\{n \in \mathbb{N} : ||x_n - L', z|| \ge r + \varepsilon\}) = 0,$$

that is, the sequence x in X is r-statistically convergent in 2-normed space $(X, \|., .\|)$.

In general, the rough statistical limit of a sequence $x = (x_n)$ may not be unique for the roughness degree r > 0. So, we have to consider the so-called r-statistically limit set of the sequence x in X, which is defined by

(5)
$$st - LIM_2^r x := \{ L \in X : x_n \xrightarrow{\| \dots \|}_{r_2 st} L \}.$$

The sequence x is said to be r-statistically convergent provided that $st - \text{LIM}_2^r x \neq \emptyset$.

We have that $LIM_2^r x = \emptyset$ for an unbounded sequence $x = (x_n)$. But such a sequence might be rough statistically convergent. For instance, define

(6)
$$x_n := \left\{ \begin{array}{ll} ((-1)^n, 0) &, & if \quad n \neq k^2 \quad (k \in \mathbb{N}) \\ (n, n) &, & otherwise \end{array} \right.$$

in $X = \mathbb{R}^2$. Because the set $\{1, 4, 9, 16, ...\}$ has natural density zero, we have

$$st - LIM_2^r x := \begin{cases} \emptyset &, & if \quad r < 1, \\ \overline{B}_r((-1,0)) \cap \overline{B}_r((1,0)) &, & if \quad r \ge 1, \end{cases}$$

and $\text{LIM}_2^r x = \emptyset$, for all $r \ge 0$.

From the example above, we have $\mathrm{LIM}_2^r x = \emptyset$ but $st - \mathrm{LIM}_2^r x \neq \emptyset$. Because a finite set of natural numbers has natural density zero, $\mathrm{LIM}_2^r x \neq \emptyset$ implies $st - \mathrm{LIM}_2^r x \neq \emptyset$ and so, we have

$$LIM_2^r x \subseteq st - LIM_2^r x$$
.

That is, we have the fact

$$\{r \ge 0 : \text{LIM}_2^r x \ne \emptyset\} \subseteq \{r \ge 0 : st - \text{LIM}_2^r x \ne \emptyset\}$$

and so

$$\inf\{r \ge 0 : \text{LIM}_2^r x \ne \emptyset\} \ge \inf\{r \ge 0 : st - \text{LIM}_2^r x \ne \emptyset\}.$$

It also directly yields

$$diam(LIM_2^r x) \leq diam(st - LIM_2^r x).$$

As mentioned above, we cannot say that the rough statistical limit of a sequence is unique for the degree of roughness r > 0. The following conclusion related to this fact.

Theorem 2.2. Let
$$x = (x_n)$$
 be a sequence in $(X, \|., .\|)$. Then, we have $diam(st - LIM_2^r x) < 2r$.

Also, generally, $diam(st - LIM_2^rx)$ has no smaller bound.

Proof. Suppose that $diam(st - \text{LIM}_2^r x) > 2r$. Then, there exist $y, t \in st - \text{LIM}_2^r x$ such that ||y - t, z|| > 2r, for each nonzero $z \in X$. Choose $\varepsilon \in (0, \frac{||y - t, z||}{2} - r)$. Since $y, t \in st - \text{LIM}_2^r x$ we have $\delta(A_1) = 0$ and $\delta(A_2) = 0$, where

$$A_1 = \{n \in \mathbb{N} : ||x_n - y, z|| \ge r + \varepsilon\} \text{ and } A_2 = \{n \in \mathbb{N} : ||x_n - t, z|| \ge r + \varepsilon\}$$

for every $\varepsilon > 0$ and each nonzero $z \in X$. By the properties of natural density, we have $\delta(A_1^c \cap A_2^c) = 1$ and so for all $n \in A_1^c \cap A_2^c$, and each nonzero $z \in X$, we can write

$$||y-t,z|| \le ||x_n-y,z|| + ||x_n-t,z|| < 2(r+\varepsilon) = ||y-t,z||$$

which is a contradiction.

Now let's do the second part of the proof. Let a sequence $x=(x_n)$ in $(X, \|., .\|)$ such that $st-\lim x=L$. Then, for every $\varepsilon>0$ and each nonzero $z\in X$, we can write

$$\delta(\{n \in \mathbb{N} : ||x_n - L, z|| \ge \varepsilon\}) = 0.$$

So, we have

$$||x_n - y, z|| \le ||x_n - L, z|| + ||L - y, z|| \le ||x_n - L, z|| + r$$

for each $y \in \overline{B}_r(L) := \{y \in X : ||y - L, z|| \le r\}$ and for each nonzero $z \in X$. Then, for every $\varepsilon > 0$ and each nonzero $z \in X$ we get

$$||x_n - y, z|| < r + \varepsilon,$$

for each $n \in \{n \in \mathbb{N} : ||x_n - L, z|| < \varepsilon\}$. Since the sequence x is statistically convergent to L, for each nonzero $z \in X$, we have

$$\delta(\{n \in \mathbb{N} : ||x_n - L, z|| < \varepsilon\}) = 1.$$

Hence, we have $y \in st - LIM_2^r x$. As a result, we can write

$$st - LIM_2^r x = \overline{B}_r(L).$$

Since $diam(\overline{B}_r(L)) = 2r$, this shows that in general, the upper bound 2r of the diameter of the set $st - LIM_2^r x$ can no longer be reduced.

By [[3], Theorem 2.2], there exists a nonnegative real number r such that $\text{LIM}_2^r x \neq \emptyset$ for a bounded sequence. Because the fact $\text{LIM}_2^r x \neq \emptyset$ implies $st - \text{LIM}_2^r x \neq \emptyset$, we have the following result.

Result 2.3. If a sequence $x = (x_n)$ is bounded in $(X, \|., .\|)$, then there exists a nonnegative real number r such that $st - \text{LIM}_2^r x \neq \emptyset$.

The opposite implication of the above result is not valid. If we let the sequence to be statistically bounded in 2-normed space, then we have the converse of Result 2.3. Hence, we give the following theorem.

Theorem 2.4. A sequence $x = (x_n)$ is statistically bounded in $(X, \|., .\|)$ if and only if there exists a nonnegative real number r such that $st - LIM_T^r x \neq \emptyset$.

Proof. Let $x = (x_n)$ be a statistically bounded sequence. Then, there exists a positive real number M such that for each nonzero $z \in X$,

$$\delta(\{n \in \mathbb{N} : ||x_n, z|| > M\}) = 0.$$

Now, we let $r' := \sup\{\|x_n, z\| : n \in A^c\}$, where $A := \{n \in \mathbb{N} : \|x_n, z\| \ge M\}$, for each nonzero $z \in X$. Then, the set $st - \text{LIM}_2^{r'}x$ contains the origin of X. Therefore, we have $st - \text{LIM}_2^{r'}x \ne \emptyset$. If $st - \text{LIM}_2^rx \ne \emptyset$, for some $r \ge 0$, then there exists an L such that $L \in st - \text{LIM}_2^rx$, that is,

$$\delta(\{n \in \mathbb{N} : ||x_n - L, z|| \ge r + \varepsilon\}) = 0,$$

for each $\varepsilon > 0$ and each nonzero $z \in X$. Then, we say that almost all x_n 's are contained in some ball with any radius grater than r. So the sequence x is statistically bounded.

By [[3], Proposition 2.1], we know that if x' is a subsequence of $x = (x_n)$, then $\text{LIM}_2^r x \subseteq \text{LIM}_2^r x'$. But this fact does not hold in the theory of statistical convergence. For example, define

$$x_n := \left\{ \begin{array}{ll} (n,n) &, & if \ n = k^3, (k \in \mathbb{N}) \\ (0, (-1)^n) &, & otherwise, \end{array} \right.$$

in $X = \mathbb{R}^2$. Then, the sequence $x' := ((1,1),(8,8),(27,27),\cdots)$ is a subsequence of $x = (x_n)$. We have $st - \text{LIM}_2^r x = \overline{B}_r((0,-1)) \cap \overline{B}_r((0,1))$ and $st - \text{LIM}_2^r x' = \emptyset$, for $r \ge 1$.

So we can present the statistical analogue of Arslan and Dündar's result [[3], Proposition 2.1] in the following theorem without proof.

Theorem 2.5. If $x' = (x_{n_k})$ is a nonthin subsequence of $x = (x_n)$ in $(X, \|., .\|)$, then

$$st - LIM_2^r x \subseteq st - LIM_2^r x'$$
.

Now, we give the topological and geometrical properties of the r-statistical limit set of a sequence.

Theorem 2.6. The r-statistical limit set of a sequence $x = (x_n)$ is closed in $(X, \|., .\|)$.

Proof. If $st - LIM_2^r x = \emptyset$, proof is clear. Let $st - LIM_2^r x \neq \emptyset$. Then, we can choose a sequence

$$(y_n) \subseteq st - LIM_2^r x$$

such that $y_n \to L'$ for $n \to \infty$. If we show that $L' \in st - \text{LIM}_2^r x$, then the proof will be complete.

Let $\varepsilon > 0$ be given. Because $y_n \to L'$, there exists an $n_{\frac{\varepsilon}{2}} \in \mathbb{N}$ such that

$$||y_n - L', z|| < \frac{\varepsilon}{2},$$

for all $n > n_{\frac{\varepsilon}{2}}$ and each nonzero $z \in X$. Now choose an $n_0 \in \mathbb{N}$ such that $n_0 > n_{\frac{\varepsilon}{2}}$. Then, we can write $||y_{n_0} - L', z|| < \frac{\varepsilon}{2}$. On the other hand, since $(y_n) \subseteq st - \text{LIM}_2^r x$, we have $y_{n_0} \in st - \text{LIM}_2^r x$, that is,

(7)
$$\delta(\lbrace n \in \mathbb{N} : ||x_n - y_{n_0}, z|| \ge r + \frac{\varepsilon}{2}\rbrace) = 0.$$

Now let us show that the inclusion

(8)
$$\{n \in \mathbb{N} : ||x_n - L', z|| < r + \varepsilon\} \supseteq \{n \in \mathbb{N} : ||x_n - y_{n_0}, z|| < r + \frac{\varepsilon}{2}\}$$

holds for each nonzero $z \in X$. Let $k \in \{n \in \mathbb{N} : ||x_n - y_{n_0}, z|| < r + \frac{\varepsilon}{2}\}$. Hence, for each nonzero $z \in X$ we have

$$||x_k - y_{n_0}, z|| < r + \frac{\varepsilon}{2}$$

and so

$$||x_k - L', z|| \le ||x_k - y_{n_0}, z|| + ||y_{n_0} - L', z|| < r + \varepsilon,$$

that is,

$$k \in \{n \in \mathbb{N} : ||x_n - L', z|| < r + \varepsilon\},\$$

which proves (8). From (7), we can say that the set on the right-hand side of (8) has natural density 1. Then the natural density of the set on the left-hand side of (8) is equal to 1. So for each nonzero $z \in X$, we get

$$\delta(\{n \in \mathbb{N} : ||x_n - L', z|| \ge r + \varepsilon\}) = 0,$$

which completes the proof.

Theorem 2.7. The r-statistical limit set of a sequence $x = (x_n)$ is convex in $(X, \|., .\|)$.

Proof. Let $y_0, y_1 \in st - LIM_2^r x$ for the sequence $x = (x_n)$ and let $\varepsilon > 0$ be given. For each nonzero $z \in X$, define

$$A_1 := \{ n \in \mathbb{N} : ||x_n - y_0, z|| \ge r + \varepsilon \} \text{ and } A_2 := \{ n \in \mathbb{N} : ||x_n - y_1, z|| \ge r + \varepsilon \}.$$

Since $y_0, y_1 \in st - LIM_2^r x$, we have $\delta(A_1) = \delta(A_2) = 0$. Therefore, we have

$$||x_n - [(1 - \lambda)y_0 + \lambda y_1], z|| = ||(1 - \lambda)(x_n - y_0) + \lambda(x_n - y_1), z|| < r + \varepsilon$$

for each $n \in A_1^c \cap A_2^c$, each $\lambda \in [0,1]$ and for each nonzero $z \in X$. Since, $\delta(A_1^c \cap A_2^c) = 1$, we have

$$\delta(\{n \in \mathbb{N} : ||x_n - [(1 - \lambda)(y_0) + \lambda y_1], z|| \ge r + \varepsilon\}) = 0,$$

that is,

$$[(1 - \lambda)(y_0) + \lambda y_1] \in st - LIM_2^r x,$$

for each nonzero $z \in X$. This proves the convexity of the set $st - LIM_2^r x$. \square

Theorem 2.8. Let $(X, \|...\|)$ be a 2-normed space and r > 0. Then, a sequence $x = (x_n)$ is r-statistically convergent to L in X iff there exists a sequence $y = (y_n)$ in X such that $st - \lim y = L$ and $\|x_n - y_n, z\| \le r$, for each $n \in \mathbb{N}$ and each nonzero $z \in X$.

Proof. Let $x_n \xrightarrow{\|...\|}_{r_2st} L$. Then, for each nonzero $z \in X$ we have

$$(9) st - \limsup ||x_n - L, z|| \le r.$$

Now, for each nonzero $z \in X$ we define

(10)
$$y_n := \begin{cases} L & , & if ||x_n - L, z|| \le r \\ x_n + r \frac{L - x_n}{||x_n - L, z||} & , & otherwise. \end{cases}$$

Then, for each nonzero $z \in X$ we can write

(11)
$$||y_n - L, z|| := \begin{cases} 0, & \text{if } ||x_n - L, z|| \le r \\ ||x_n - L, z|| - r, & \text{otherwise,} \end{cases}$$

and by definition of y_n , we have

$$||x_n - y_n, z|| \le r$$
, for all $n \in \mathbb{N}$.

By (9) and the definition of y_n , for all $n \in \mathbb{N}$ we have $st-\limsup ||y_n-L,z||=0$, which implies that $st-\lim y_n=L$.

Conversely, since $st - \lim y_n = L$, we have

$$\delta(\{n \in \mathbb{N} : ||y_n - L, z|| \ge \varepsilon\}) = 0,$$

for each $\varepsilon>0$ and each nonzero $z\in X$ and so, it is easy to see that the inclusion

$$\{n\in\mathbb{N}:\|y_n-L,z\|\geq\varepsilon\}\supseteq\{n\in\mathbb{N}:\|x_n-L,z\|\geq r+\varepsilon\}$$

holds. Since

$$\delta(\{n \in \mathbb{N} : ||y_n - L, z|| \ge \varepsilon\}) = 0,$$

for each nonzero $z \in X$, we have

$$\delta(\{n\in\mathbb{N}:\|x_n-L,z\|\geq r+\varepsilon\})=0,$$

which completes the proof.

If we replace the condition

" $\|x_n - y_n, z\| \le r$, for all $n \in \mathbb{N}$ and for each nonzero $z \in X$,"

in the hypothesis of the above theorem with the condition

"
$$\delta(\{n \in \mathbb{N} : ||x_n - y_n, z|| > r\}) = 0$$
",

then the theorem will also be valid.

Definition 2.9. Let $(X, \|., .\|)$ be a 2-normed space. $c \in X$ is called a statistical cluster point of a sequence $x = (x_n)$ in X provided that the natural density of the set

$$\{n \in \mathbb{N} : ||x_n - c, z|| < \varepsilon\}$$

is different from zero for every $\varepsilon > 0$ and each nonzero $z \in X$. We denote the set of all statistical cluster points of the sequence x by Γ_x^2 .

Now, we give an important property of the set of rough statistical limit points of a sequence.

Lemma 2.10. For an arbitrary $c \in \Gamma_x^2$ of a sequence $x = (x_n)$ in $(X, \|., .\|)$, we have $\|L - c, z\| \le r$, for all $L \in st - \text{LIM}_2^r x$ and each nonzero $z \in X$.

Proof. Assume on the contrary that there exists a point $c \in \Gamma_x^2$ and $L \in st - \text{LIM}_2^r x$ such that

$$||L - c, z|| > r,$$

for each nonzero $z \in X$. Define $\varepsilon := \frac{\|L-c,z\|-r}{3}$. Then, for each nonzero $z \in X$ we can write

$$(12) \quad \{n \in \mathbb{N} : ||x_n - L, z|| \ge r + \varepsilon\} \supseteq \{n \in \mathbb{N} : ||x_n - c, z|| < \varepsilon\}.$$

Since $c \in \Gamma_x^2$, for each nonzero $z \in X$ we have

$$\delta(\{n \in \mathbb{N} : ||x_n - c, z|| < \varepsilon\}) \neq 0.$$

Hence by (12), for each nonzero $z \in X$ we have

$$\delta(\{n \in \mathbb{N} : ||x_n - L, z|| \ge r + \varepsilon\}) \ne 0,$$

which contradicts the fact $L \in st - LIM_2^r x$.

Now we give two statistical convergence criteria associated with the rough statistical limit set.

Theorem 2.11. A sequence $x = (x_n)$ statistically converges to L in (X, ||., .||) if and only if $st - LIM_2^r x = \overline{B}_r(L)$.

Proof. We have proved the necessity part of this theorem in the proof of Theorem 2.2.

Sufficiency. Since $st - LIM_2^r x = \overline{B}_r(L) \neq \emptyset$, then by Theorem 2.4 we can say that the sequence x is statistically bounded. Assume on the contrary that

the sequence x has another statistical cluster point L' different from L. Then, the point

$$\overline{L} := L + \frac{r}{\|L - L', z\|} (L - L')$$

satisfies

$$\|\overline{L} - L', z\| = \left(\frac{r}{\|L - L', z\|} + 1\right) \|L - L', z\| = r + \|L - L', z\| > r.$$

Since L' is a statistical cluster point of the sequence x, by Lemma 2.10 this inequality implies that $\overline{L} \not\in st-\mathrm{LIM}_2^r x$. This contradicts the fact $\|\overline{L}-L,z\|=r$ and $st-\mathrm{LIM}_2^r x=\overline{B}_r(L)$. Therefore, L is the unique statistical cluster point of the sequence x and so, we can say that the sequence x is statistically convergent to L.

Theorem 2.12. Let $(X, \|., .\|)$ be a strictly convex space and $x = (x_n)$ be a sequence in this space. If there $t_1, t_2 \in st - \text{LIM}_2^r x$ such that $\|t_1 - t_2, z\| = 2r$, for each nonzero $z \in X$, this sequence is statistically convergent to $\frac{1}{2}(t_1 + t_2)$.

Proof. Assume that $t \in \Gamma_x^2$. Then, $t_1, t_2 \in st - \text{LIM}_2^r x$ implies that

(13)
$$||t_1 - t, z|| \le r \text{ and } ||t_2 - t, z|| \le r$$

for each nonzero $z \in X$, by Lemma 2.10. On the other hand, for each nonzero $z \in X$, we have

$$(14) 2r = ||t_1 - t_2, z|| \le ||t_1 - t, z|| + ||t_2 - t, z||,$$

and so

$$||t_1 - t, z|| = ||t_2 - t, z|| = r,$$

combining the inequalities (13) and (14). Since for each nonzero $z \in X$,

(15)
$$\frac{1}{2}(t_2 - t_1) = \frac{1}{2}[(t - t_1) + (t_2 - t)]$$

and $||t_1 - t_2, z|| = 2r$, we have

$$\|\frac{1}{2}(t_2 - t_1), z\| = r.$$

By the strict convexity of the space and from the equality (15), for each nonzero $z \in X$ we get

$$\frac{1}{2}(t_2 - t_1) = t - t_1 = t_2 - t,$$

which implies that

$$t = \frac{1}{2}(t_1 + t_2).$$

Hence, t is the unique statistical cluster point of the sequence $x=(x_n)$. On the other hand, the assumption $t_1, t_2 \in st - \text{LIM}_2^r x$ implies that $st - \text{LIM}_2^r x \neq \emptyset$.

By Theorem 2.4, the sequence x is statistically bounded. Consequently, the sequence x is statistically convergent, i.e.,

$$st - \lim x = \frac{1}{2}(t_1 + t_2).$$

The following theorem is the statistical extension of [[4], Theorem 2.5].

Theorem 2.13. Let $(X, \|., .\|)$ be a 2-normed space.

(i) If $c \in \Gamma_x^2$ then,

$$(16) st - LIM_2^r x \subseteq \overline{B}_r(c).$$

(ii)

(17)
$$st - LIM_2^r x = \bigcap_{c \in \Gamma_x^2} \overline{B}_r(c) = \{ L \in X : \Gamma_x^2 \subseteq \overline{B}_r(L) \}.$$

Proof. (i) Let $L \in st - LIM_2^r x$ and $c \in \Gamma_x^2$. Then, by Lemma 2.10, we have $\|L - c, z\| \le r$,

otherwise we get

$$\delta(\{n \in \mathbb{N} : ||x_n - L, z|| \ge r + \varepsilon\}) \ne 0,$$

for $\varepsilon:=\frac{\|L-c,z\|-r}{3}$ and each nonzero $z\in X.$ This contradicts the fact $L\in st-\mathrm{LIM}_2^rx.$

(ii) By the inclusion (16), we can write

(18)
$$st - LIM_2^r x \subseteq \bigcap_{c \in \Gamma_x^2} \overline{B}_r(c).$$

Now let $y \in \bigcap_{c \in \Gamma_x^2} \overline{B}_r(c)$. Then for each nonzero $z \in X$, we have

$$||y - c, z|| \le r,$$

for all $c \in \Gamma_x^2$, which is equivalent to

$$\Gamma_r^2 \subseteq \overline{B}_r(y),$$

that is,

(19)
$$\bigcap_{c \in \Gamma_x^2} \overline{B}_r(c) \subseteq \{ L \in X : \Gamma_x^2 \subseteq \overline{B}_r(L) \}.$$

Now let $y \notin st - LIM_2^r x$. Then, there exists an $\varepsilon > 0$ such that for each nonzero $z \in X$,

$$\delta(\{n \in \mathbb{N} : ||x_n - y, z|| \ge r + \varepsilon\}) \ne 0,$$

which implies the existence of a statistical cluster points c of the sequence x with

$$||y - c, z|| \ge r + \varepsilon,$$

П

that is, $\Gamma_x^2 \subseteq \overline{B}_r(y)$ and

$$y \notin \{L \in X : \Gamma_r^2 \subseteq \overline{B}_r(L)\}.$$

Hence, $y \in st - LIM_2^r x$ follows from

$$y \in \{L \in X : \Gamma_x^2 \subseteq \overline{B}_r(L)\},\$$

that is,

(20)
$$\{L \in X : \Gamma_x^2 \subseteq \overline{B}_r(L)\} \subseteq st - \text{LIM}_2^r x.$$

Therefore, the inclusions (18)-(20) ensure that (17) holds.

We end this work by giving the relation between the set of statistical cluster points and the set of rough statistical limit points of a sequence.

Theorem 2.14. Let $x = (x_n)$ be a statistically bounded sequence in $(X, \|., .\|)$. If $r = diam(\Gamma_x^2)$, then we have

$$\Gamma_x^2 \subseteq st - LIM_2^r x$$
.

Proof. Let $c \notin st - LIM_2^r x$. Then there exists an $\varepsilon' > 0$ such that, for each nonzero $z \in X$

(21)
$$\delta(\lbrace n \in \mathbb{N} : ||x_n - c, z|| \ge r + \varepsilon' \rbrace) \ne 0.$$

Since the sequence is statistically bounded and from the inequality (21), there exists another statistical cluster point c' such that, for each nonzero $z \in X$,

$$||c-c',z|| > r + \widetilde{\varepsilon},$$

where $\widetilde{\varepsilon} := \frac{\varepsilon'}{2}$. So we get $diam(\Gamma_x^2) > r + \widetilde{\varepsilon}$, which proves the theorem. \square

References

- M. Arslan, E. Dündar, *I*-convergence and *I*-Cauchy sequence of functions in 2-normed spaces, Konuralp J. Math. 6(1) (2018), 57–62.
- [2] M. Arslan, E. Dündar, On *I*-convergence of sequences of functions in 2-normed spaces, Southeast Asian Bull. Math. 42 (2018) 491–502.
- [3] M. Arslan, E. Dündar, Rough convergence in 2-normed spaces, Bull. Math. Anal. Appl. 10(3) (2018) 1–9.
- [4] M. Arslan, E. Dündar, On rough convergence in 2-normed spaces and some properties, Filomat 33(16) (2019), 5077-5086.
- [5] S. Aytar, Rough statistical convergence, Numer. Funct. Anal. and Optim. 29(3-4) (2008) 291–303
- [6] S. Aytar, The rough limit set and the core of a real requence, Numer. Funct. Anal. and Optim. 29(3-4) (2008) 283–290.
- [7] H. Çakallı and S. Ersan, New types of continuity in 2-normed spaces, Filomat 30(3) (2016) 525–532.
- [8] E. Dündar, C. Çakan, Rough *I*-convergence, Gulf J. Math. **2**(1) (2014) 45–51.
- [9] E. Dündar, C. Çakan, Rough convergence of double sequences, Demonstr. Math. 47(3) (2014) 638–651.
- [10] E. Dündar, On rough \mathcal{I}_2 -convergence, Numer. Funct. Anal. and Optim. **37**(4) (2016) 480–491.

- [11] E. Dündar, M. Arslan, S. Yegül, On *I*-uniform convergence of sequences of functions in 2-normed spaces, Rocky Mountain J. Math. 50(5) (2020), 1637–1646.
- [12] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244.
- [13] S. Gähler, 2-metrische Räume und ihre topologische struktur, Math. Nachr. 26 (1963), 115–148.
- [14] S. Gähler, 2-normed spaces, Math. Nachr. 28 (1964), 1–43.
- [15] H. Gunawan, M. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci. 27(10) (2001) 631–639
- [16] H. Gunawan, M. Mashadi, On finite dimensional 2-normed spaces, Soochow J. Math. 27(3) (2001) 321–329.
- [17] M. Gürdal, S. Pehlivan, The statistical convergence in 2-Banach spaces, Thai J. Math. 2(1) (2004) 107–113.
- [18] M. Gürdal, S. Pehlivan, Statistical convergence in 2-normed spaces, Southeast Asian Bull. Math. 33 (2009) 257–264.
- [19] M. Gürdal, I. Açık, On *I*-Cauchy sequences in 2-normed spaces, Math. Inequal. Appl. 11(2) (2008) 349–354.
- [20] M. Gürdal, On ideal convergent sequences in 2-normed spaces, Thai J. Math. 4(1) (2006) 85–91.
- [21] Ö. Kişi, E. Dündar, Rough \(\mathcal{I}_2\)-lacunary statistical convergence of double sequences, J. Inequal. Appl. 2018:230 (2018) 16 pages.
- [22] M. Mursaleen, A. Alotaibi, On *I*-convergence in random 2-normed spaces, Math. Slovaca 61(6) (2011) 933–940.
- [23] H. X. Phu, Rough convergence in normed linear spaces, Numer. Funct. Anal. and Optim. 22 (2001) 199–222.
- [24] H. X. Phu, Rough continuity of linear operators, Numer. Funct. Anal. and Optim. 23 (2002) 139–146.
- [25] H. X. Phu, Rough convergence in infinite dimensional normed spaces, Numer. Funct. Anal. and Optim. 24 (2003) 285–301.
- [26] S. Sarabadan, S. Talebi, Statistical convergence and ideal convergence of sequences of functions in 2-normed spaces, Int. J. Math. Math. Sci. 2011 (2011) 10 pages, doi:10.1155/2011/517841
- [27] E. Savaş, M. Gürdal, Ideal Convergent Function Sequences in Random 2-Normed Spaces, Filomat 30(3) (2016) 557–567.
- [28] I.J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959) 361–375.
- [29] A. Sharma, K. Kumar, Statistical convergence in probabilistic 2-normed spaces, Math. Sci. $\mathbf{2}(4)$ (2008) 373–390.
- [30] A. Şahiner, M. Gürdal, S. Saltan, H. Gunawan, Ideal convergence in 2-normed spaces, Taiwanese J. Math. 11(5) (2007) 1477–1484.
- [31] U. Yamancı, M. Gürdal, \(\mathcal{I}_2\)-statistical convergence in 2-normed space, Arab J. Math. Sci. 20(1) (2014), 41–47.
- [32] S. Yegül, E. Dündar, On statistical convergence of sequences of functions in 2-normed spaces, J. Class. Anal. 10(1) (2017) 49–57.
- [33] S. Yegül, E. Dündar, Statistical convergence of double sequences of functions and some properties in 2-normed spaces, Facta Univ. Ser. Math. Inform. 33(5) (2018) 705–719.
- [34] S. Yegül, E. Dündar, \mathcal{I}_2 -convergence of double sequences of functions in 2-normed spaces, Univ. J.Math. Appl. **2**(3) (2019) 130–137.
- [35] S. Yegül, E. Dündar, On Z₂-convergence and Z₂-Cauchy double sequences Of functions in 2-normed spaces, Facta Univ. Ser. Math. Inform. 35(3) (2020) 801–814.

Mukaddes Arslan Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey E-mail: mukad.deu@gmail.com

Erdinç Dündar Deparment of Mathematics, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey E-mail: edundar@aku.edu.tr