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ROUGH STATISTICAL CONVERGENCE IN 2-NORMED
SPACES

MUKADDES ARSLAN* AND ERDING DUNDAR

Abstract. In this study, we introduced the notions of rough statistical
convergence and defined the set of rough statistical limit points of a se-
quence and obtained statistical convergence criteria associated with this
set in 2-normed space. Then, we proved that this set is closed and convex
in 2-normed space. Also, we examined the relations between the set of
statistical cluster points and the set of rough statistical limit points of a
sequence in 2-normed space.

1. Introduction and Background

Throughout the paper, N denotes the set of all positive integers and R
the set of all real numbers. The concept of convergence of a sequence of real
numbers has been extended to statistical convergence independently by Fast
[12] and Schoenberg [28].

The concept of 2-normed spaces was initially introduced by Géhler [13, 14] in
the 1960’s. Since then, this concept has been studied by many authors. Giirdal
and Pehlivan [18] studied statistical convergence, statistical Cauchy sequence
and investigated some properties of statistical convergence in 2-normed spaces.
Sarabadan and Talebi [26] studied statistical convergence and ideal convergence
of sequences of functions in 2-normed spaces. Futhermore, a lot of development
have been made in this area (see [1, 2, 7, 19, 20, 21, 22, 30, 27, 29, 31, 32, 33,
34, 35]).

The idea of rough convergence was first introduced by Phu [23] in finite-
dimensional normed spaces. In [23], he showed that the set LIM"z is bounded,
closed, and convex; and he introduced the notion of rough Cauchy sequence.
He also investigated the relations between rough convergence and other con-
vergence types and the dependence of LIM"z on the roughness degree r. In
another paper [24] related to this subject, he defined the rough continuity of lin-
ear operators and showed that every linear operator f : X — Y is 7 -continuous
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at every point x € X under the assumption dimY < oo and r > 0 where X
and Y are normed spaces. In [25], he extended the results given in [23] to
infinite-dimensional normed spaces. Aytar [5] studied of rough statistical con-
vergence and defined the set of rough statistical limit points of a sequence and
obtained two statistical convergence criteria associated with this set and prove
that this set is closed and convex. Also, Aytar [6] studied that the r-limit set
of the sequence is equal to the intersection of these sets and that r-core of the
sequence is equal to the union of these sets. Recently, Arslan and Diindar [3, 4]
introduced rough convergence and investigated some properties in 2-normed
spaces.

In this paper, we note that our results and proof techniques presented in
this paper are analogues of those in Phu’s [23] paper. Namely, the actual origin
of most of these results and proof techniques is them papers. The following our
theorems and results are the extension of theorems and results in [3, 4, 23].

Now, we recall the some fundamental definitions and notations (See [1, 2,
3,5, 6,8,09, 10, 11, 15, 16, 17, 18, 19, 20, 23, 24, 25, 30, 26]).

Let X be a real vector space of dimension d, where 2 < d < co. A 2-norm
on X is a function |-, || : X x X — R which satisfies the following statements:

(i) |lz,y|| = 0 if and only if x and y are linearly dependent.
(i) |z, yll = lly, x|
(iil) [laz, y|| = laf[z, yll, o € R.
(V) [,y + 2] <z, yll + [z, 2]
As an example of a 2-normed space we may take X = R? being equipped

with the 2-norm ||z, y|| := the area of the parallelogram based on the vectors
x and y which may be given explicitly by the formula

2yl = 21y2 — zay1|; @ = (21,22),y = (y1,92) € R

In this study, we suppose X to be a 2-normed space having dimension d;
where 2 < d < co. The pair (X, |-, -||) is then called a 2-normed space.

A sequence (x,) in 2-normed space (X, |, -||) is said to be convergent to
L in X if nl;rrgo |lzn — L,y|| = 0, for every y € X. In such a case, we write

lim x, = L and call L the limit of (z,,).

n—oo

Example 1.1. Let z = (x,) = (nL_H,%) and L = (1,0). It is clear that

(x,,) convergent to L = (1,0) in 2-normed space X = R?.

Throughout the paper, let » be a nonnegative real number and R” denotes
the real n-dimensional space with the norm |.||. Consider a sequence z =
(n) C R™.

The sequence x = (x,,) is said to be r-convergent to L, denoted by z,, - L
provided that

Ve>0 3In.eN: n>n.=|la, — L|| <r+e.
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The set
LIM"z ={L€R™: 2, — L}

is called the r-limit set of the sequence z = (z,). A sequence z = (z,) is
said to be r-convergent if LIM"x # (). In this case, r is called the convergence
degree of the sequence x = (x,,). For r = 0, we get the ordinary convergence.

Let K be a subset of the set of positive integers N, and let us denote the
set {k € K : k <n} by K,. Then the natural density of K is given by

K,
0(K) = lim | |,

n—o0o N

where |K,,| denotes the number of elements in K. Clearly, a finite subset has
natural density zero, and we have §(K¢) = 1 — §(K) where K¢ := N\ K is the
complement of K. If Ky C Ko, then §(K7) < §(K3).

A sequence x = (x,) is said to be r-statistically convergent to L, denoted

by x,, = L, provided that the set
{neN: |z, —L|| >r+e}

has natural density zero for ¢ > 0; or equivalently, if the condition st —
limsup ||z, — L|| < r is satisfied. In addition, we can write x,, % L if and
only if, the inequality ||z, — L|| < r + € holds for every € > 0 and almost all n.

Let (x,) be a sequence in (X, ||.,.||) 2-normed linear space and r be a non-
negative real number. () is said to be rough convergent (r-convergent) to L

denoted by z,, Ur L if

(1) Ve>0,In. eN:n>n.= |z, —L,z|| <r+e
or equivalently, for every z € X, if

(2) limsup ||z, — L, z|| < 7.

If (1) holds L is an r-limit point of (z,), which is usually no more unique
(for r > 0). So, we have to consider the so-called r-limit set (or shortly r-limit)
of (z,) defined by

(3) LIMiz = {L e X -z, 20, L},

The sequence (x,,) is said to be rough convergent if LIM5a # (. In this case, r is
called a convergence degree of (). For r = 0 we have the classical convergence
in 2-normed space again. But our proper interest is case r > 0. There are
several reasons for this interest. For instance, since an orginally convergent
sequence (y,) (with y, — L) in 2-normed space often cannot be determined
(i.e., measured or calculated) exactly, one has to do with an approximated
sequence (z,,) satisfying ||, — yn, || < r for all n and for every z € X, where
r > 0 is an upper bound of approximation error. Then, (z,) is no more
convergent in the classical sense, but for every z € X,

[ en = Ly 2l < l[en = yns 2l + llyn = Ly 2] <7+ [lyn — L, 2|
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implies that is r-convergent in the sense of (1).

Example 1.2. Let X = R2?. The sequence z = (z,,) = ((—1)",0) is not
convergent in (X, ||.,.||) but it is rough convergent for every z € X. It is clear
that

LMz = {y = (y1,92) € X : y1| <r =1, |yo| <7}

In other words

) , if r<1

LIMQ%:{BA(—LO))mBT(u,o» Cif >,

where B, (L) :={y€ X : |ly— L, z|| <r}.

Lemma 1.3 ([3], Theorem 2.2). Let (X, ||.,.||) be a 2-normed space and
consider a sequence x = (x,,) € X. The sequence (x,,) is bounded if and only if
there exists an r > 0 such that LIM5x # (). For all r > 0, a bounded sequence
() Is always contains a subsequence x,, with

LIMS™ ) 2, £ 0.

Lemma 1.4 ([3], Theorem 2.3). Let (X, ||.,.||) be a 2-normed space and
consider a sequence x = (x,,) € X. For all r > 0, the r-limit set LIM5x of an
arbitrary sequence (x,,) is closed.

Lemma 1.5 ([3], Theorem 2.4). Let (X, ||.,.||) be a 2-normed space and
consider a sequence x = (x,) € X. If yo € LIM{°x and y; € LIM3'x, then

Yo = (L —a)yo + ay; € LIMél_a)r0+ar1$, for a€l0,1].

2. MAIN RESULTS

Definition 2.1. Let (X, ||.,.]|) be a 2-normed space. A sequence x = (xy,)

in X said to be rough statistically convergent (rqst-convergent) to L, denoted

by x,, Mrgst L, provided that the set

{neN:|z,—L,z|| >r+¢e}

has natural density zero, for every € > 0 and each nonzero z € X; or equiva-
lently, if the condition

st —limsup ||z, — L, z|| < r

. ; . . Il
is satisfied. In addition, we can write x,, —

rost L, if and only if, the inequality
|ln — L, 2| <r+e

holds for every € > 0, each nonzero z € X and almost all n.
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In this convergence, r is called the statistical convergence degree. For r = 0,
rough statistically convergent coincide ordinary statistical convergence.

Similar to the idea of classical rough convergence, the idea of rough statis-
tical convergence of a sequence can be interpreted as follows.

Suppose that a sequence y = (y,,) in X is statistically convergent and cannot
be measured or calculated exactly, on one has to do with an approximated (or
statistically approximated) sequence x = (z,,) in X satisfying

[#n = yn, 2 <7
for all n and each nonzero z € X, (or for almost all n, that is,
d(n €N ||xp —yn,z|| =7)=0.)

Then, the sequence = (z,,) is not statistically convergent anymore, but since
the inclusion for each nonzero z € X
(4) {neN:|y,—Lz[|>e}2{neN:|z,—L 2| >r+e}
holds and we have

S({n €N+ yy — L',z > r+¢)) =0,
and so

d({neN:|a, — L' z| >r+e}) =0,

that is, the sequence x in X is r-statistically convergent in 2-normed space
(X, o).

In general, the rough statistical limit of a sequence z = (z,) may not be
unique for the roughness degree » > 0. So, we have to consider the so-called
r-statistically limit set of the sequence x in X, which is defined by

Il

(5) st —LIMsz :=={L € X : z,, —=,,s L}.
The sequence x is said to be r-statistically convergent provided that st —
LIM5z # 0.

We have that LIMjz = @) for an unbounded sequence = = (z,,). But such a
sequence might be rough statistically convergent. For instance, define

(6) T ::{ (-D)"0) . if n#£k (keN)

(n,n) , otherwise
in X = R2. Because the set {1,4,9,16,...} has natural density zero, we have
U , iof r<,
BA((-1,0) N Bo((1,0) . if r>1,

and LIM5yz = 0, for all r > 0.

From the example above, we have LIM5z = () but st — LIM5z # (). Because
a finite set of natural numbers has natural density zero, LIMjz # @ implies
st — LIM4x # () and so, we have

LIM52 C st — LIM5x.

st — LIMyx = {
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That is, we have the fact
{r>0:LIMjz # 0} C {r > 0: st — LIMjx # 0}
and so
inf{r > 0: LIMjz # 0} > inf{r > 0: st — LIM5z # 0}.
It also directly yields
diam(LIMsx) < diam(st — LIM5x).

As mentioned above, we cannot say that the rough statistical limit of a
sequence is unique for the degree of roughness r > 0. The following conclusion
related to this fact.

Theorem 2.2. Let = (z,,) be a sequence in (X, ||.,.||). Then, we have

diam(st — LIM5z) < 2r.
Also, generally, diam(st — LIM5a) has no smaller bound.

Proof. Suppose that diam(st — LIM5z) > 2r. Then, there exist y,t €
st — LIM5x such that ||y — ¢, z|| > 2r, for each nonzero z € X. Choose

g€ (0, H*’_Qitz” — 7). Since y,t € st — LIMjz we have §(4;) = 0 and §(A) =0,
where
Ay ={neN:|z,—y,z]| >r+ec}tand Ay ={neN: |z, -t 2| >r+e}
for every € > 0 and each nonzero z € X. By the properties of natural density,
we have 6(A§ N AS) = 1 and so for all n € A{ N A§, and each nonzero z € X,
we can write
ly =2l < llzn =y, 2l + [lon —t, 2] <2(r +2) = |ly = £, 2]

which is a contradiction.

Now let’s do the second part of the proof. Let a sequence x = (z,) in
(X, |I-,-I) such that st —lima = L. Then, for every € > 0 and each nonzero
z € X, we can write

d{neN:|x, —L,z| >e})=0.

So, we have
[en =y, 2| < llwn = Ly 2l + 1L =y, 2] < llwn = Ly 2] +7
for each y € B, (L) := {y € X : |ly — L,z|| < r} and for each nonzero z € X.
Then, for every € > 0 and each nonzero z € X we get
|20 —y, 2l <7 +e,

for each n € {n € N : ||z, — L, z|| < }. Since the sequence z is statistically
convergent to L, for each nonzero z € X, we have

d{neN: |z, —L,z|| <e}) =1

Hence, we have y € st — LIMjz. As a result, we can write

st — LIMsz = B,.(L).
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Since diam(B,.(L)) = 2r, this shows that in general, the upper bound 2r of the
diameter of the set st — LIM5x can no longer be reduced. O

By [[3], Theorem 2.2], there exists a nonnegative real number r such that
LIMSx # () for a bounded sequence. Because the fact LIMjx # () implies
st — LIM4x # (), we have the following result.

Result 2.3. If a sequence x = (z,,) is bounded in (X,|.,.||), then there
exists a nonnegative real number r such that st — LIMyx # (.

The opposite implication of the above result is not valid. If we let the se-
quence to be statistically bounded in 2-normed space, then we have the converse
of Result 2.3. Hence, we give the following theorem.

Theorem 2.4. A sequence x = (x,,) is statistically bounded in (X, ||.,.||) if
and only if there exists a nonnegative real number r such that st — LIMsx # (.

Proof. Let = (z,,) be a statistically bounded sequence. Then, there exists
a positive real number M such that for each nonzero z € X,

0({n eN:|z,,z|| > M})=0.
Now, we let 7/ := sup{||xn, 2| : n € A°}, where A := {n € N : |z, 2] > M},
for each nonzero z € X. Then, the set st — LIM;x contains the origin of X.

Therefore, we have st — LIMQ/J? £ (. If st — LIMSx # @, for some r > 0, then
there exists an L such that L € st — LIMjz, that is,

d{neN:|x,—L,z| 2r+e}) =0,

for each € > 0 and each nonzero z € X. Then, we say that almost all x,’s
are contained in some ball with any radius grater than r. So the sequence x is
statistically bounded. O

By [[3], Proposition 2.1], we know that if 2’ is a subsequence of © = (z,,),
then LIM52z C LIM52’. But this fact does not hold in the theory of statistical
convergence. For example, define

. (n,n) , if n=k (keN)
Tn = { (0,(=1)™) , otherwise,
in X = R2  Then, the sequence =’ := ((1,1),(8,8),(27,27),---) is a sub-
sequence of x = (z,). We have st — LIMjz = B,((0,—1)) N B,((0,1)) and
st — LIM5z' = 0, for r > 1.

So we can present the statistical analogue of Arslan and Diindar’s result

[[3], Proposition 2.1] in the following theorem without proof.

Theorem 2.5. If @/ = (x,,) is a nonthin subsequence of © = (x,) in
(X, |-, -1), then
st — LIMbx C st — LIM5a2'.

Now, we give the topological and geometrical properties of the r-statistical
limit set of a sequence.
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Theorem 2.6. The r-statistical limit set of a sequence x = (x,,) is closed
in (X, |.,-1)-

Proof. Tf st — LIM5z = (), proof is clear. Let st — LIM5xz # (). Then, we can
choose a sequence
(yn) C st — LIMsx
such that y,, — L’ for n — oo. If we show that L’ € st — LIMjz, then the proof
will be complete.
Let € > 0 be given. Because y,, — L', there exists an ne € N such that

€

lyn — L2l < 5,
for all n > n: and each nonzero z € X. Now choose an ng € N such that
ng > nz. Then, we can write [y,, — L’,2|| < 5. On the other hand, since

(yn) C st — LIM5z, we have y,, € st — LIMz, that is,

(7) 6({n € N: llow = yngs 2 2 7+ 5}) = 0.

Now let us show that the inclusion

(8) {neN:|z,—L,z|<r+e} 2{neN:|z,—yn,, 2l <r+%}

holds for each nonzero z € X. Let k € {n € N: |[z;, — yn,, 2|| <7+ 5}. Hence,
for each nonzero z € X we have
€
I = a2l < 7+ 5
and so
ka - L/,Z” < ”xk - yanH + ”yno - L/,Z” <r+g,
that is,
ke{neN:|z,—L z| <r+e},
which proves (8). From (7), we can say that the set on the right-hand side of
(8) has natural density 1. Then the natural density of the set on the left-hand
side of (8) is equal to 1. So for each nonzero z € X, we get
S({neN: ||z, — L z| >r+e}) =0,
which completes the proof. O

Theorem 2.7. The r-statistical limit set of a sequence x = (x,) Is convex
in (X, -1

Proof. Let yo,y1 € st — LIMjx for the sequence z = (z,,) and let € > 0 be
given. For each nonzero z € X, define

Ay:={neN: |z, —yo,z|| >r+e} and Ay :={n e N: ||z, —y1,2|| > r+e}.
Since o, y1 € st — LIM5x, we have §(A;) = 6(As) = 0. Therefore, we have
[n = (1 = Nyo + Ayal, 2l] = [(1 = M) (@n = yo) + Azn — 1), 2[| <7+
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for each n € A§ N A5, each A € [0,1] and for each nonzero z € X. Since,
J(AS N AS) =1, we have
o({n € N+ [lzn — [(1 = A)(yo) + Aynl, 2] = 7+ €}) =0,
that is,
[(1 =N (yo) + Aya] € st — LIM5z,

for each nonzero z € X. This proves the convexity of the set st — LIMsxz. O

Theorem 2.8. Let (X, ||.,.||) be a 2-normed space and r > 0. Then, a
sequence r = (x,) Is r-statistically convergent to L in X iff there exists a

sequence y = (y,) In X such that st —limy = L and ||x,, — yn, || < r, for each
n € N and each nonzero z € X.

Proof. Let x, Mwst L. Then, for each nonzero z € X we have

(9) st —limsup ||z, — L, z|| < r.

Now, for each nonzero z € X we define

10 . L , ifllen —Lyz|| <7
(10) Yn =19 z, +r7”wi:”2’jz“ , otherwise.
Then, for each nonzero z € X we can write

o 0 , ifllen —Lyz|| <7
(11) lym = L 2| := { |xn — L,2|| —7 , otherwise,

and by definition of y,,, we have
|0 = Yn, || < r, for all n € N.

By (9) and the definition of y,,, for all n € N we have st—lim sup ||y, —L, z|| = 0,
which implies that st — limy, = L.
Conversely, since st — limy,, = L, we have

0({n € N:|lyn — L,z[| = €}) =0,

for each ¢ > 0 and each nonzero z € X and so, it is easy to see that the
inclusion

{neN:|ly,— L,z|| >e} 2{neN: |z, — L,z|| >r+¢}
holds. Since
d({n €Nt llyn — L,z 2 €}) =0,
for each nonzero z € X, we have
d{neN:|a,—L,z| 2r+e}) =0,

which completes the proof. O
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If we replace the condition

LLI

|Tn — yn, 2|| <, for all n € N and for each nonzero z € X,”
in the hypothesis of the above theorem with the condition
““({neN: |z, —yn, 2| >1}) =07,
then the theorem will also be valid.
Definition 2.9. Let (X, ||.,.||) be a 2-normed space. ¢ € X is called a

statistical cluster point of a sequence x = (x,) in X provided that the natural
density of the set

{neN: |z, —cz| <e}
is different from zero for every ¢ > 0 and each nonzero z € X. We denote the
set of all statistical cluster points of the sequence x by I'2.

Now, we give an important property of the set of rough statistical limit
points of a sequence.

Lemma 2.10. For an arbitrary ¢ € I'2 of a sequence x = (z,,) in (X, ||., .|)),
we have ||L — ¢, z|| <, for all L € st — LIM5x and each nonzero z € X.

Proof. Assume on the contrary that there exists a point ¢ € I'2 and L €
st — LIMjz such that

1L —c z|| >
for each nonzero z € X. Define € := % Then, for each nonzero z € X
we can write
(12) {neN:|z,—L,z[|>r+e} 2{neN: |z, —cz|| <e}.
Since ¢ € I'2, for each nonzero z € X we have

d({n eN: |z, —c, 2] <e}) #0.
Hence by (12), for each nonzero z € X we have
d{neN:|x,—L,z| >r+e}) #0,

which contradicts the fact L € st — LIM5z. O

Now we give two statistical convergence criteria associated with the rough
statistical limit set.

Theorem 2.11. A sequence x = (z,,) statistically converges to L in (X, ||.,.]|)

if and only if st — LIMbx = B,.(L).

Proof. We have proved the necessity part of this theorem in the proof of
Theorem 2.2.

Sufficiency. Since st — LIMbz = B,.(L) # 0, then by Theorem 2.4 we can
say that the sequence x is statistically bounded. Assume on the contrary that
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the sequence = has another statistical cluster point L’ different from L. Then,

the point
— T
L=L+ ——(L-L
R
satisfies
— r
L-L = —+1||L-L = L-L .
T 2al = (=g + 1) ME = Dsll = r L= F] > v

Since L' is a statistical cluster point of the sequence x, by Lemma 2.10 this
inequality implies that L ¢ st — LIMja. This contradicts the fact |[L—L, z|| = r
and st — LIMbx = B,.(L). Therefore, L is the unique statistical cluster point of
the sequence x and so, we can say that the sequence x is statistically convergent
to L. [

Theorem 2.12. Let (X,||.,.||) be a strictly convex space and x = (z,,) be
a sequence In this space. If there t1,ty € st —LIMgyx such that ||t1 —tg, 2| = 2r,
for each nonzero z € X, this sequence is statistically convergent to %(tl + t2).

Proof. Assume that t € I'2. Then, t1,t5 € st — LIMja implies that
(13) llt1 — ¢, 2|| <7 and ||ta — ¢, 2| < r

for each nonzero z € X, by Lemma 2.10. On the other hand, for each nonzero
z € X, we have

(14) 2r = |lts —ta, 2l < Ity — ¢, 2] + [[t2 = 2, 2],
and so
[ty =t 2l = [ta — ¢, 2] =,
combining the inequalities (13) and (14). Since for each nonzero z € X,

(15) St =) = 5[t —12) + (12— )

and ||t; — t2, 2| = 2r, we have
1
“(ty—t =r
I3t~ )2l =

By the strict convexity of the space and from the equality (15), for each nonzero
z € X we get

1
§(t2—t1)=t—t1:t2—t,
which implies that
t= 1(t +t3)
= 5+ t2).

Hence, ¢ is the unique statistical cluster point of the sequence = (z,,). On the
other hand, the assumption t;,ts € st — LIM4z implies that st — LIM5z # (0.
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By Theorem 2.4, the sequence z is statistically bounded. Consequently, the
sequence x is statistically convergent, i.e.,

1
st —limx = §(t1 + tg).

The following theorem is the statistical extension of [[4], Theorem 2.5].

Theorem 2.13. Let (X,|.,.]|) be a 2-normed space.
(i) If c € T2 then,

(16) st — LIMbz C B,.(c).
(ii)
(17) st—LIMsz = | By(c)={L € X :T2 CB,(L)}.
c€el?
Proof. (i) Let L € st — LIMjx and ¢ € T'2. Then, by Lemma 2.10, we have
IL—¢,z|| <
otherwise we get
d{neN:|a,—L,z| >r+e}) #0,

for € := % and each nonzero z € X. This contradicts the fact L €

st — LIMZ .
(ii) By the inclusion (16), we can write

(18) st —LIMjz C () B,(0).

cel'2

Now let y € [\ B,(c). Then for each nonzero z € X, we have
cer?

ly = zll <7,
for all ¢ € I'2, which is equivalent to
Fi C B,(y),
that is,
(19) M Brc) C{L e X T2 CB,(L)}.
cer?

Now let y & st — LIMjx. Then, there exists an € > 0 such that for each nonzero
ze X,
o({n €N:llzn —y, 2| = r+e}) #0,
which implies the existence of a statistical cluster points ¢ of the sequence x
with
ly—czl =7 +e,
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that is, I'2 Z B,.(y) and
ye{LeX:T2CB,.(L)}
Hence, y € st — LIM5z follows from
ye{LeX:T2CB,.(L)},

that is,
(20) {LeX:T2CB,(L)}C st—LIMjaz.
Therefore, the inclusions (18)-(20) ensure that (17) holds. O

We end this work by giving the relation between the set of statistical cluster
points and the set of rough statistical limit points of a sequence.

Theorem 2.14. Let © = (x,) be a statistically bounded sequence in
(X, |-, -11)- If r = diam(T'2), then we have

I'2 C st — LIM}a.

Proof. Let ¢ &€ st — LIM5x. Then there exists an ¢’ > 0 such that, for each
nonzero z € X

(21) d{neN: |z, —cz|| >r+£'}) #0.

Since the sequence is statistically bounded and from the inequality (21), there
exists another statistical cluster point ¢’ such that, for each nonzero z € X,

le—¢,z|| >r+¢,

where € := %, So we get diam(I'2) > r + £, which proves the theorem. O
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