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ROUGH STATISTICAL CONVERGENCE OF DIFFERENCE

DOUBLE SEQUENCES IN NORMED LINEAR SPACES

Ömer KİŞİ* and Hatice Kübra ÜNAL

Abstract. In this paper, we introduce rough statistical convergence of

difference double sequences in normed linear spaces as an extension of
rough convergence. We define the set of rough statistical limit points of

a difference double sequence and analyze the results with proofs.

1. Introduction

Fast [1] initiated statistical convergence for a real sequence. Mursaleen
and Edely [2] examined the statistical convergence via double sequences. The
other studies of this concept can be examined by [3, 4, 5]. In the wake of
the study of ideal convergence defined by Kostyrko et al. [6], there has been
comprehensive research to discover applications and summability studies of
the classical theories. Kostyrko et al. [7] studied the idea of I-convergence
and extremal I-limit points. Notable results on this topic can be found in
[8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24].

The idea of rough convergence was first introduced by Phu [25] in finite-
dimensional normed spaces. In another paper [26] related to this subject, Phu
defined the rough continuity of linear operators and showed that every lin-
ear operator f : X → Y is r -continuous at every point x ∈ X under the
assumption dimY < ∞ and r > 0, where X and Y are normed spaces. In
[27], Phu extended the results given in [25] to infinite-dimensional normed
spaces. Aytar [29] studied the rough statistical convergence. Also, Aytar [30]
studied that the rough limit set and the core of a real sequence. Pal et al.
[31] generalized the idea of rough convergence into rough statistical conver-
gence and rough ideal convergence. Recently, rough convergence of double
sequences has been introduced by Malik and Maity [32] and investigated some
basic properties of this type of convergence and also studied relation between
rough convergence and Pringsheim convergence for double sequences. In [33]
rough statistical convergence of double sequences in finite dimensional normed
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linear spaces was studied and investigated some basic properties of this type
of convergence rough statistical convergence of double sequences. Recently,
Dündar and Çakan [34] studied rough ideal convergence. Also Dündar and
Çakan [35] investigated the rough convergence of double sequence. Then after
Dündar [36] studied rough ideal convergence of double sequence. Savaş et al.
[37] introduced rough I-statistical convergence as an extension of rough conver-
gence. Rough convergence, rough statistical convergence and ∆I-convergence
for difference sequences and for double difference sequences have been studied.
For details, see [38, 39, 40, 41, 42, 43, 44, 45].

The idea of rough statistical convergence has developed a new perspec-
tive for non-convergent sequences. Applying this new perspective to difference
sequences, which are known with their own properties, will produce very inter-
esting results.

2. Definitions and notations

In this section, we recall some definitions and notations, which form the
base for the present study.

During the paper, let r be a nonnegative real number and Rn denotes the
real n-dimensional space with the norm ‖.‖. Consider a sequence x = (xk) ⊂
X = Rn.

The sequence x = (xk) is said to be r-convergent to x∗, denoted by xk
r−→ x∗

provided that

∀ε > 0 ∃iε ∈ N : k ≥ iε ⇒ ‖xk − x∗‖ < r + ε.

The set

LIMrx := {x∗ ∈ Rn : xk
r−→ x∗}

is called the r-limit set of the sequence x = (xk). A sequence x = (xi) is said to
be r-convergent if LIMrx 6= ∅. In this case, r is called the convergence degree
of the sequence x = (xk). For r = 0, we get the ordinary convergence. There
are several reasons for this interest (see [25]).

A double sequence x = (xmn)(m,n)∈N×N of real numbers is said to be
bounded if there exists a positive real number M such that |xmn| < M, for
all m,n ∈ N. That is

‖x‖∞ = sup
m,n
|xmn| <∞.

A double sequence x = (xmn) of real numbers is said to be convergent to
L ∈ R in Pringsheim’s sense (shortly, p-convergent to L ∈ R), if for any ε > 0,
there exists Nε ∈ N such that |xmn−L| < ε, whenever m,n > Nε. In this case,
we write

lim
m,n→∞

xmn = L.
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We recall that a subset K of N× N is said to have natural density d(K) if

d(K) = lim
m,n→∞

K(m,n)

m.n
,

where K(m,n) = |{(j, k) ∈ N× N : j ≤ m, k ≤ n}|.

Throughout the paper we consider a sequence x = (xmn) such that (xmn) ∈
Rn.

Let x = (xmn) be a double sequence in a normed space (X, ‖.‖) and r be
a non negative real number. x is said to be r-statistically convergent to ξ,

denoted by x
r−st2−→ ξ, if for ε > 0 we have d(A(ε)) = 0, where A(ε) = {(m,n) ∈

N×N : ‖xmn − ξ‖ ≥ r+ ε}. In this case, ξ is called the r-statistical limit of x.

A double sequence x = (xmn) is said to be rough convergent (r-convergent)

to x∗ with the roughness degree r, denoted by xmn
r−→ x∗ provided that

∀ε > 0 ∃kε ∈ N : m,n ≥ kε ⇒ ‖xmn − x∗‖ < r + ε,

or equivalently, if

lim sup ‖xmn − x∗‖ ≤ r.
A double sequence (∆xkl) is said to be bounded if there exists a positive

real number K such that ‖∆xkl‖ < K for all (k, l) ∈ N× N.
A double sequence (∆xkl) is said to be statistically bounded if there exists

a positive real number K

d ({(k, l) ∈ N× N : ‖∆xkl‖ ≥ K}) = 0.

A point c ∈ X is said to be a statistical cluster point of a double sequence
(∆xkl) if for any ε > 0, the set

d ({(k, l) ∈ N× N : ‖∆xkl − c‖ < ε}) 6= 0.

We use the notation Γ2 (∆xkl) to denote the set of all statistical cluster points
of (∆xkl).

3. Main results

In this section, we define the concept of rough statistical convergence for
difference double sequences in (Rn, ‖.‖) space, where Rn is real n-dimensional
normed space and we prove some important theorems.

Definition 3.1. Let (∆xkl) be a double sequence in a normed linear space
(Rn, ‖.‖) and r be a nonnegative real number. Then, (∆xkl) is said to be rough
statistically convergent to x∗ or r-statistically convergent to x∗ if for each ε > 0,
the set

{(k, l) ∈ N× N : ‖∆xkl − x∗‖ ≥ r + ε}
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has natural density zero or equivalently

st2 − lim sup ‖∆xkl − x∗‖ ≤ r.
In this case x∗ is called the r-st2-limit point of a difference double sequence

(∆xkl) and we denote it by ∆xkl
r−st2−→ x∗. Here r is called roughness degree. If

we take r = 0, we obtain the notion statistical convergence of double sequence.

In general the r-st2-limit point of a difference double sequence may not be
unique for the roughness degree r > 0. We define the set of all r-st2-limit
points of a difference double sequence (∆xkl) with

st2-LIMr (∆xkl) =
{
x∗ ∈ Rn : ∆xkl

r−st2−→ x∗

}
.

The following example gives us an example of a difference double sequence
which is not statistically convergent but r-statistically convergent.

Example 3.2. Let the difference sequence (∆ykl) be a statistically con-
vergent to y∗ and can not be measured exactly. Additionally, let (∆xkl) be a
sequence that provides the property ‖∆xkl −∆ykl‖ ≤ r (a.a.k, l). Then, the
sets

{(k, l) ∈ N× N : ‖∆ykl − x∗‖ ≥ ε}
and

{(k, l) ∈ N× N : ‖∆xkl −∆ykl‖ ≥ r} ,

have natural density zero for any ε > 0. According to these informations we
can not say that (∆xkl) is statistically convergent. But we know that

{(k, l) ∈ N× N : ‖∆xkl − y∗‖ ≥ r + ε} ⊆ {(k, l) ∈ N× N : ‖∆ykl − y∗‖ ≥ ε}
and this relation gives us that the natural density of the set on the left will be
zero. So, the sequence (∆xkl) is r-statistically convergent.

For the set of all r-st2-limit points of (∆xkl), if st2-LIMr (∆xkl) 6= ∅, then

st2-LIMr (∆xkl) = [st2- lim sup ∆xkl − r, st2- lim inf ∆xkl + r] .

On the other hand, we know that if (∆xkl) is unbounded, then the set of r-limit
points is empty, i.e., LIMr (∆xkl) = ∅. Whereas this sequence might be rough
statistically convergent. The following example explains this situation.

Example 3.3. Let

(∆xkl) =

{
kl, if k, l are squares,

(−1)k+l, otherwise,

So, we get

st2-LIMr (∆xkl) =

{
∅, if r < 1,
[1− r, r − 1] , otherwise.

and LIMr (∆xkl) = ∅ for all r ≥ 0.
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Corollary 3.4. st2-LIMr (∆xkl) 6= ∅ does not imply LIMr (∆xkl) 6= ∅, but
LIMr (∆xkl) 6= ∅ implies st2−LIMr (∆xkl) 6= ∅. Therefore,

LIMr (∆xkl) ⊆ st2-LIMr (∆xkl)

and

diam (LIMr (∆xkl)) ⊆ diam (st2-LIMr (∆xkl)) .

Theorem 3.5. For any difference double sequence (∆xkl),

diam (st2-LIMr (∆xkl)) ≤ 2r.

In general diam(st2-LIMr (∆xkl)) has no smaller bound.

Proof. Assume that diam(st2-LIMr (∆xkl)) > 2r. Then, there exist y, z ∈
st2-LIMr (∆xkl) such that

d := ‖y − z‖ > 2r.

Now, we select ε > 0 so that ε < d
2 − r. Define A1 and A2 sets such that

A1 := {(k, l) ∈ N× N : ‖∆xkl − y‖ ≥ r + ε}
and

A2 := {(k, l) ∈ N× N : ‖∆xkl − z‖ ≥ r + ε} .
Since y, z ∈ st2-LIMr (∆xkl), for every ε > 0, we have d (A1) = 0, d (A2) = 0
and from the properties of natural density, d (Ac

1 ∩Ac
2) = 1. So

‖y − z‖ ≤ ‖∆xkl − y‖+ ‖∆xkl − z‖
< 2 (r + ε) < 2r + 2

(
d
2 − r

)
= d = ‖y − z‖ ,

for all (k, l) ∈ Ac
1 ∩Ac

2. This is a contradiction. Thus,

diam (st2-LIMr (∆xkl)) ≤ 2r.

Now, let’s show that there is generally no smaller bound. For this, we show
that st2-LIMr (∆xkl) = Br (x∗). We know that diam

(
Br (x∗)

)
= 2r for

Br (x∗) := {y ∈ X : ‖x∗ − y‖ ≤ r} .

Choose a difference double sequence (∆xkl) such that st2-limr ∆xkl = x∗. For
each ε > 0 we get

d ({(k, l) ∈ N× N : ‖∆xkl − x∗‖ ≥ ε}) = 0.

Then

‖∆xkl − y‖ ≤ ‖∆xkl − x∗‖+ ‖x∗ − y‖ ≤ ‖∆xkl − x∗‖+ r,

for each y ∈ Br (x∗). In this case,

‖∆xkl − y‖ < r + ε,

for each (k, l) ∈ {(k, l) ∈ ‖∆xkl − x∗‖ < ε}. At the same time, we know that

d ({(k, l) ∈ N× N : ‖∆xkl − x∗‖ < ε}) = 1

and so, y ∈ st2-limr ∆xkl. Then, we obtain Br (x∗) = st2-LIMr (∆xkl).
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Theorem 3.6. For a bounded double sequence (∆xkl), there is a non-
negative real number r such that st2−LIMr (∆xkl) 6= ∅.

The question of whether the converse of the above theorem is also valid is
a question that can immediately come to mind. The answer is no. But if the
sequence is statistically bounded, the converse is valid. The theorem that gives
this case is below.

Theorem 3.7. A double sequence (∆xkl) is statistically bounded iff there
exists a non-negative real number r such that st2-LIMr (∆xkl) 6= ∅.

Proof. First, let’s show that st2-LIMr (∆xkl) 6= ∅, when (∆xkl) is statisti-
cally bounded. From the definition of statistically boundedness, there exists a
positive real number K such that d (A) = 0, where

A = {(k, l) ∈ N× N : ‖∆xkl‖ ≥ K} .

Let
r′ := sup {‖∆xkl‖ : (k, l) ∈ Ac} .

Then, st2-LIMr′ (∆xkl) contains the origin of Rn and st2-LIMr′ (∆xkl) 6= ∅.
Conversely, let st2-LIMr′ (∆xkl) 6= ∅ for some r ≥ 0. Let x∗ ∈ st2-

LIMr′ (∆xkl). In that case,

d ({(k, l) ∈ N× N : ‖∆xkl − x∗‖ ≥ r + ε}) = 0,

for each ε > 0. Therefore, we can say that almost all (∆xkl) are contained in
some ball with any radius greater than r and (∆xkl) is statistically bounded.

In rough convergence, we know that when
(
∆xkplq

)
is a subset of (∆xkl)

LIMr (∆xkl) ⊆ LIMr
(
∆xkplq

)
.

In the case of rough statistical convergence, the subsequence must be non-thin
to satisfy this condition.

Now let {kp}p∈N and {lq}q∈N be two strictly increasing sequences of nat-

ural numbers. If (∆xkl) is a double sequence, then we define
(
∆xkplq

)
as a

subsequence of (∆xkl).

Definition 3.8.
(
∆xkplq

)
is a non-thin subsequence of (∆xkl) provided that

the set M does not have natural density zero where M = {(kp, lq) , p, q ∈ N},
i.e., d ({(kp, lq) , p, q ∈ N}) = 1.

If
(
∆xkplq

)
is a subsequence of (∆xkl), then LIMr (∆xkl) ⊂ LIMr

(
∆xkplq

)
.

But this result is not true for statistical convergence. To show this we consider
the following example.

Example 3.9. Consider the double sequence (∆xkl) in Rn defined by

(∆xkl) =

{
kl, if k, l both are squares
0, otherwise,
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Then,
(
∆xkplq

)
is a subsequence of (∆xkl) for all r > 0, st2-LIMr (∆xkl) =

[−r, r] but st2-LIMr
(
∆xkplq

)
= ∅.

Theorem 3.10. If
(
∆xkplq

)
is a non-thin subsequence of (∆xkl), then

st2-LIMr (∆xkl) ⊂ st2-LIMr
(
∆xkplq

)
.

Proof. Let x∗ ∈ st2-LIMr (∆xkl). Then, for any ε > 0, d (A (ε)) = 0, where

A (ε) = {(k, l) ∈ N× N : ‖∆xkl − x∗‖ ≥ r + ε} .
Then, d (Ac (ε)) = 1.

Since
(
∆xkplq

)
is a non-thin subsequence of (∆xkl), so d (K) = 1, where

K = {(kp, lq) : p, q ∈ N} .
Then, d (Ac (ε) ∩K) = 1.

Let
A′ (ε) =

{
(p, q) ∈ N× N :

∥∥∆xkplq − x∗
∥∥ ≥ r + ε

}
.

Now {
(p, q) ∈ N× N :

∥∥∆xkplq − x∗
∥∥ < r + ε

}
⊃ Ac (ε) ∩K.

Therefore, d
(
(A′ (ε))

c)
= 1 and so d (A′ (ε)) = 0, which implies x∗ ∈ st2-

LIMr
(
∆xkplq

)
.

Theorem 3.11. For all r ≥ 0, the r-statistical limit set st2-LIMr (∆xkl) of
a double sequence (∆xkl) is closed.

Proof. For this proof, we use one of the well-known theorems of functional
analysis. According to this theorem, “For a convergent sequence ∆ykl → y∗,
when ∆y ∈ st2-LIMr (∆xkl) (at the same time y∗ ∈ st2-LIMr (∆xkl)), then
st2-LIMr (∆xkl) is closed”. If st2-LIMr (∆xkl) = ∅, then the proof is trivial.
Assume that st2-LIMr (∆xkl) 6= ∅. Then, we have a sequence (∆ykl) ⊆ st2-
LIMr (∆xkl) such that ∆ykl → y∗. From the definition of convergence, for each
ε > 0, there exists k ε

2
, l ε

2
∈ N such that ‖∆ykl − y∗‖ < ε

2 for all k > k ε
2
, l > l ε

2
.

Choose a (k0, l0) ∈ N×N such that k0 > k ε
2
, l0 > l ε

2
. Then, ‖∆yk0l0 − y∗‖ < ε

2 .

On the other hand, since (∆ykl) ⊆ st2-LIMr (∆xkl), we have yk0l0 ∈ st2-
LIMr (∆xkl), i.e.,

d
({

(k, l) ∈ N× N : ‖∆xkl − yk0l0‖ ≥ r +
ε

2

})
= 0.

Now, we need to show following inclusion

{(k, l) ∈ N× N : ‖∆xkl − y∗‖ < r + ε}
⊇
{

(k, l) ∈ N× N : ‖∆xkl − yk0l0‖ < r + ε
2

}
.

Let

(p, r) ∈
{

(k, l) ∈ N× N : ‖∆xkl − yk0l0‖ < r +
ε

2

}
.

Then, we have

‖∆xpr − yk0l0‖ < r +
ε

2
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and hence

‖∆xpr − y∗‖ ≤ ‖∆xpr − yk0l0‖+ ‖yk0l0 − y∗‖ < r + ε.

It means

(p, r) ∈ {(k, l) ∈ N× N : ‖∆xkl − yk0l0‖ < r + ε} .
Hence, st2-LIMr (∆xkl) of a sequence (∆xkl) is a closed set.

Theorem 3.12. The set st2-LIMr (∆xkl) of a double sequence (∆xkl) is
convex.

Proof. Let y0, y1 ∈ st2-LIMr (∆xkl). Let ε > 0 be given. Then, d (A0 (ε)) =
0, d (A1 (ε)) = 0, where

A0 (ε) := {(k, l) ∈ N× N : ‖∆xkl − y0‖ ≥ r + ε} ,

and

A1 (ε) := {(k, l) ∈ N× N : ‖∆xkl − y1‖ ≥ r + ε} .

We know that d (Ac
0 (ε) ∩Ac

1 (ε)) = 1 from the assumption.
Let λ ∈ [0, 1] and

C (ε) = {(k, l) ∈ N× N : ‖∆xkl − [(1− λ) y0 + λy1]‖ ≥ r + ε} .

Now (k, l) /∈ A0 (ε) ∪A1 (ε)⇒ ‖∆xkl − y0‖ < r + ε and ‖∆xkl − y1‖ < r + ε
⇒ ‖∆xkl − [(1− λ) y0 + λy1]‖ ≤ (1− λ) ‖∆xkl − y0‖+λ ‖∆xkl − y1‖ < r+

ε
⇒ (k, l) /∈ C (ε) .
Contra-positively, (k, l) ∈ C (ε) implies (k, l) ∈ A0 (ε) ∪ A1 (ε). Thus,

C (ε) ⊂ A0 (ε) ∪ A1 (ε) and d (C (ε)) = 0. Therefore, [(1− λ) y0 + λy1] ∈ st2-
LIMr (∆xkl). Hence, the set st2-LIMr (∆xkl) is convex.

Theorem 3.13. Let r > 0. Then, a double sequence (∆xkl) is rough
statistically convergent to x∗ iff there exists a difference double sequence (∆ykl)
such that st2-LIMr (∆ykl) = x∗ and ‖∆xkl −∆ykl‖ ≤ r, for all (k, l) ∈ N× N.

Proof. Necessity: Let ∆x
r−st2−→ x∗. From the definition

st2- lim sup ‖∆xkl − x∗‖ ≤ r.

Now we define a double sequence (∆ykl) by

∆ykl :=

{
x∗, if ‖∆xkl − x∗‖ ≤ r,
∆xkl + r x∗−∆xkl

‖x∗−∆xkl‖ , otherwise.

Then, it is easy to see that

‖∆ykl − x∗‖ =

 0, if ‖∆xkl − x∗‖ ≤ r,

‖∆xkl − x∗‖ − r, otherwise,

and ‖∆xkl −∆ykl‖ ≤ r, for all (k, l) ∈ N× N.
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Conversely, let there exists a double sequence (∆ykl) such that st2-LIMr (∆ykl) =
x∗ and ‖∆xkl −∆ykl‖ ≤ r, for all (k, l) ∈ N× N. From the definition of statis-
tical convergence, for each ε > 0, we get

d ({(k, l) ∈ N× N : ‖∆ykl − x∗‖ ≥ ε}) = 0.

We know that

{(k, l) ∈ N× N : ‖∆ykl − x∗‖ ≥ ε} ⊇ {(k, l) ∈ N× N : ‖∆xkl − x∗‖ ≥ r + ε} .

and we have

d ({(k, l) ∈ N× N : ‖∆xkl − x∗‖ ≥ r + ε}) = 0.

Hence, (∆xkl) is rough statistically convergent to x∗.

In order to prove the next theorem, we will need the following lemma, which
is related to statistical cluster points.

Lemma 3.14. Let Γ2
(∆xkl)

be the set of all statistical cluster points of

(∆xkl) and c be an arbitrary element of this set. For all x∗ ∈ st2-LIMr (∆xkl)
we have ‖x∗ − c‖ ≤ r.

Proof. Let’s accept the contrary of the lemma and find the contradiction.
Assume that there exist a point c ∈ Γ2

(∆xkl)
and x∗ ∈ st2-LIMr (∆xkl) such

that ‖x∗ − c‖ > r. Define ε = ‖x∗−c‖−r
3 . In that case,

{(k, l) ∈ N× N : ‖∆xkl − x∗‖ ≥ r + ε} ⊇ {(k, l) ∈ N× N : ‖∆xkl − c‖ < ε} .

From the fact that c ∈ Γ2
(∆xkl)

, we know that the natural density of the set

{(k, l) ∈ N× N : ‖∆xkl − c‖ < ε}

is not zero. So, by using the inclusion above, we obtain

d ({(k, l) ∈ N× N : ‖∆xkl − x∗‖ ≥ r + ε}) 6= 0

and this completes the proof.

Theorem 3.15. A double sequence (∆xkl) is rough statistically convergent
to x∗ iff st2-LIMr (∆xkl) = Br (x∗).

Proof. In Theorem 3.5, we proved the necessity part. So, we need to prove

if st2-LIMr (∆xkl) = Br (x∗), then ∆x
r−st2−→ x∗. We know that if the statistical

cluster point of a statistically bounded sequence is unique, then the sequence
is statistically convergent to this point.

In that case, if st2-LIMr (∆xkl) = Br (x∗) 6= ∅, then (∆xkl) is statistically
bounded. Let (∆xkl) sequence has two different statistical cluster points, such
as x∗ and x′∗. Then, the point

x∗ := x∗ +
r

‖x∗ − x′∗‖
(x∗ − x′∗) ,
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satisfies

‖x∗ − x′∗‖ =

(
r

‖x∗ − x′∗‖
+ 1

)
‖x∗ − x′∗‖ = r + ‖x∗ − x′∗‖ > r.

From the previous lemma, x∗ /∈ st2-LIMr (∆xkl) but this contradicts the fact
that ‖x∗ − x∗‖ = r and st2-LIMr (∆xkl) = Br (x∗). This means that x∗ is
the unique statistical cluster point of (∆xkl). Therefore, (∆xkl) is statistically
convergent to x∗.

Corollary 3.16. If (X, ‖.‖) is a strictly convex space and (∆xkl) is a dou-
ble sequence in X. Also if there exist y1, y2 ∈ st2−LIMr (∆xkl) such that
‖y1 − y2‖ = 2r, then, this sequence is rough statistically convergent to y1+y2

2 .

The proof is straightforward and so is omitted.
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[37] E. Savaş, S. Debnath and D. Rakshit, On I-statistically rough convergence, Publ. Inst.

Math. 105 (119) (2019), 145-150.

[38] M. Arslan and E. Dündar, On rough convergence in 2-normed spaces and some proper-
ties, Filomat, 33 (16) (2019), 5077-5086,
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[45] Ö. Kişi, Rough ∆I2-convergence of double difference sequences, Ann. Fuzzy Math. In-

form. 20 (2) (2020), 105-114.
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