• Title/Summary/Keyword: rotational deformation

Search Result 186, Processing Time 0.031 seconds

Finite element modelling for the static bending response of rotating FG-GPLRC beams with geometrical imperfections in thermal mediums

  • Bui Manh Cuong;Abdelouahed Tounsi;Do Van Thom;Nguyen Thi Hai Van;Phung Van Minh
    • Computers and Concrete
    • /
    • v.33 no.1
    • /
    • pp.91-102
    • /
    • 2024
  • Beam-shaped components commonly rotate along a fixed axis when massive mechanical structures like rotors, jet engine blades, motor turbines, and rotating railway crossings perform their functions. For these structures to be useful in real life, their mechanical behavior is essential. Therefore, this is the first article to use the modified shear deformation theory type hyperbolic sine functions theory and the FEM to study the static bending response of rotating functionally graded GPL-reinforced composite (FG-GPLRC) beams with initial geometrical deficiencies in thermal media. Graphene platelets (GPLs) in three different configurations are woven into the beam's composition to increase its strength. By comparing the numerical results with those of previously published studies, we can assess the robustness of the theory and mechanical model employed in this study. Parameter studies are performed to determine the effect of various geometric and physical variables, such as rotation speed and temperature, on the bending reactions of structures.

Study on dynamic flexural stiffness of CFST members through Bayesian model updating

  • Shang-Jun Chen;Chuan-Chuan Hou
    • Steel and Composite Structures
    • /
    • v.51 no.6
    • /
    • pp.697-712
    • /
    • 2024
  • In this paper, the dynamic flexural stiffness of concrete-filled steel tubular (CFST) members is investigated based on vibration modal testing and a Bayesian model updating procedure. To reflect the actual service states of CFST members, a 3-stage modal testing procedure is developed for 6 circular CFST beam-columns, in which the modal parameters of the specimens under varying axial load levels are extracted. In the model updating procedure, a Timoshenko beam element model is first established, in which the influence of shear deformation and rotational inertia are incorporated. Subsequently, a 2-round Bayesian model updating strategy is proposed to calculate the dynamic flexural stiffness of the specimens, which could effectively consider the influence of physical constraints in the updating process and achieve reasonably well results. Analysis of the updating results shows that with the increase of the axial load level, degradation of the flexural stiffness is significantly influenced by the load eccentricity. It shows that the cracking of the core concrete is the primary reason for the flexural stiffness degradation of CFST beam-columns. Finally, based on comparison with equations proposed by several design standards, the calculation methods for the dynamic flexural stiffness of CFST members is recommended.

A Study on the Simple Design Method of Semi-Rigid Connection with Angle in Steel Structure (강구조에서 ㄱ형강을 이용한 반강접 접합의 간편 설계)

  • Heo, Myong-Jae;Kim, Hong-Geun;Choi, Won-Gu
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.261-273
    • /
    • 2011
  • Recently, the demands for steel frame are increasing because of the trend and due to the demand for bigger and higher buildings. In the analysis of typical steel frame, connections are based on the idealized fixed or pinned connection. A fixed connection assumes that the relative angle of each member before deformation is the same after the transformation. Therefore, the stiffener reinforces the connection to sufficient rigidity and stability of the panel zone. In the economical aspect, however, the necessity of connection that the stiffener reinforcement has omitted is increasing due to the excessive production as well as labor costs of connection. In contrast, pinned connection is assumed that bending moments between the beams and columns do not transfer to each member. This is easy to make in the plant and the construction is simple. However, the structural efficiency is reduced in pinned connection because connection cannot transfer moments. The introduction of this semirigid process can decide efficient cross-sectional dimensions that promote ease in the course of structural erection, as performed by members in the field-a call for safety in the entire frame. Therefore, foreign countries exert efforts to study the practical behavior and the results are applied to criterion. This paper analyzes the semirigid connection of domestic steel by design specifications of AISC/LRFD and make data bank that pertain to each steel. After wards, the results are compared to those of idealized connection; at the same time, this paper presents a design method that matches economic efficiency, end-fixity, and rotational stiffness.

A Study on the Development of Diagnosing System of Defects on Surface of Inner Overlay Welding of Long Pipes using Liquid Penetrant Test (PT를 이용한 파이프내면 육성용접부 표면결함 진단시스템 개발에 관한 연구)

  • Lho, Tae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.121-127
    • /
    • 2018
  • A system for diagnosing surface defects of long and large pipe inner overlay welds, 1m in diameter and 6m in length, was developed using a Liquid Penetrant Test (PT). First, CATIA was used to model all major units and PT machines in 3-dimensions. They were used for structural strength analysis and strain analysis, and to check the motion interference phenomenon of each unit to produce two-dimensional production drawings. Structural strength analysis and deformation analysis using the ANSYS results in a maximum equivalent stress of 44.901 MPa, which is less than the yield tensile strength of SS400 (200 MPa), a material of the PT Machine. An examination of the performance of the developed equipment revealed a maximum travel speed of 7.2 m/min., maximum rotational speed of 9 rpm, repeatable position accuracy of 1.2 mm, and inspection speed of $1.65m^2/min$. The results of the automatic PT-inspection system developed to check for surface defects, such as cracks, porosity, and undercut, were in accordance with the method of ASME SEC. V&VIII. In addition, the results of corrosion testing of the overlay weld layer in accordance with the ferric chloride fitting test by the method of ASME G48-11 indicated that the weight loss was $0.3g/m^2$, and met the specifications. Furthermore, the chemical composition of the overlay welds was analyzed according to the method described in ASTM A375-14, and all components met the specifications.

Evaluation of Flexural Ductility of Negative Moment Region of I-Girder with High Strength Steel (고강도 강재 적용 I-거더의 부모멘트부 휨연성 평가)

  • Joo, Hyunsung;Moon, Jiho;Choi, Byung-Ho;Lee, Hak-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6A
    • /
    • pp.513-523
    • /
    • 2010
  • For continuous I-girder bridges, a large negative bending moment is generated near pier region so that plastic hinge is first formed at this point. Then, the bending moment is redistributed when the I-girder has enough flexural ductility (or rotational capacity). However, for I-girder with high strength steel, it is known that the flexural ductility is considerably decreased by increasing the yield strength of material. Thus, it is necessary to conduct a study for guaranteeing proper flexural ductility of I-girder with high-strength steel. In this study, the evaluation of flexural ductility of negative moment region of I-girder with high strength steel where yield stress of steel is 680 MPa is presented based on the results of finite element analysis and experiment. From the results, it is found that the flexural ductility of the I-girder is significantly reduced due to the increase of elastic deformation and the decrease of plastic deformation ability of the material when the yield strength increases. In this study, the method to improve the flexural ductility of I-girder with high strength steel is proposed by an unequal installation of cross beam and an optimal position of cross beam is also suggested. Finally, the effects of the unequal installation of cross beam on the flexural ductility are discussed based on the experimental results.

Thermal Analysis of Ballscrew Systems by Explicit Finite Difference Method (현시적 유한차분법을 이용한 볼나사 시스템의 열해석)

  • Min, Bog-Ki;Park, Chun-Hong;Chung, Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.41-51
    • /
    • 2016
  • Friction generated from balls and grooves incurs temperature rise in the ballscrew system. Thermal deformation due to the heat degrades positioning accuracy of the feed drive system. To compensate for the thermal error, accurate prediction of the temperature distribution is required first. In this paper, to predict the temperature distribution according to the rotational speed, solid and hollow cylinders are applied for analysis of the ballscrew shaft and nut, respectively. Boundary conditions such as the convective heat transfer coefficient, friction torque, and thermal contact conductance (TCC) between balls and grooves are formulated according to operating and fabrication conditions of the ballscrew. Explicit FDM (finite difference method) is studied for development of a temperature prediction simulator. Its effectiveness is verified through numerical analysis.

Static impedance functions for monopiles supporting offshore wind turbines in nonhomogeneous soils-emphasis on soil/monopile interface characteristics

  • Abed, Younes;Bouzid, Djillali Amar;Bhattacharya, Subhamoy;Aissa, Mohammed H.
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1143-1179
    • /
    • 2016
  • Offshore wind turbines are considered as a fundamental part to develop substantial, alternative energy sources. In this highly flexible structures, monopiles are usually used as support foundations. Since the monopiles are large diameter (3.5 to 7 m) deep foundations, they result in extremely stiff short monopiles where the slenderness (length to diameter) may range between 5 and 10. Consequently, their elastic deformation patterns under lateral loading differ from those of small diameter monopiles usually employed for supporting structures in offshore oil and gas industry. For this reason, design recommendations (API and DNV) are not appropriate for designing foundations for offshore wind turbine structures as they have been established on the basis of full-scale load tests on long, slender and flexible piles. Furthermore, as these facilities are very sensitive to rotations and dynamic changes in the soil-pile system, the accurate prediction of monopile head displacement and rotation constitutes a design criterion of paramount importance. In this paper, the Fourier Series Aided Finite Element Method (FSAFEM) is employed for the determination of static impedance functions of monopiles for OWT subjected to horizontal force and/or to an overturning moment, where a non-homogeneous soil profile has been considered. On the basis of an extensive parametric study, and in order to address the problem of head stiffness of short monopiles, approximate analytical formulae are obtained for lateral stiffness $K_L$, rotational stiffness $K_R$ and cross coupling stiffness $K_{LR}$ for both rough and smooth interfaces. Theses expressions which depend only on the values of the monopile slenderness $L/D_p$ rather than the relative soil/monopile rigidity $E_p/E_s$ usually found in the offshore platforms designing codes (DNV code for example) have been incorporated in the expressions of the OWT natural frequency of four wind farm sites. Excellent agreement has been found between the computed and the measured natural frequencies.

Effects of Earth's Atmosphere on Terrestrial Reference Frame : A Review (지구 대기가 지구 기준계에 미치는 영향 : 기존 모델 분석)

  • Na, Sung-Ho;Cho, Jungho
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.3
    • /
    • pp.133-142
    • /
    • 2015
  • Displacement of the Earth's surface due to atmospheric loading has been recognized since a century years ago, and its accurate estimation is required in present day geodesy and surveying, particularly in space geodesy. Atmospheric load deformation in continental region can readily be calculated with the given atmospheric pressure field and the load Green's function, and, in near coastal area, approximate model is used for the calculation. The changes in the Earth's atmospheric circulation and the seasonal variation of atmospheric pressure on two hemispheres of the Earth are the each main causes of variation of the Earth's spin angular velocity and polar motion respectively. Wind and atmospheric pressure do the major role in other periodic and non-periodic perturbations of the positions in the Earth's reference frame and variations in the Earth's spin rotational state. In this reviewing study, the developments of related theories and models are summarized along with brief description of phenomena, and the geodetic perturbing effects of a hypothetical typhoon passing Korea are shown as an example. Finally related existing problems and further necessary studies are discussed in general.

Evaluation of Plastic Rotational Capacity Based on Material Characteristics in Reinforced Concrete Flexural Members (재료 특성에 기반한 철근콘크리트 휨부재의 소성회전능력 산정)

  • Choi, Seung-Won;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.825-832
    • /
    • 2010
  • Although a critical section reaches its flexural strength in reinforced concrete structures, the structure does not always fail because moment redistribution occurs during the formation of plastic hinges. Inelastic deformation in a plastic hinge region results in plastic rotation. A plastic hinge mainly depends on material characteristics. In this study, a plastic hinge length and plastic rotation are evaluated using the flexural curvature distribution which is derived from the material models given in Eurocode 2. The influence on plastic capacity the limit values of the material model used, that is, ultimate strain of concrete and steel and hardening ratio of steel(k), are investigated. As results, it is appeared that a large ultimate strain of concrete and steel is resulting in large plastic capactiy and also as a hardening ratio of steel increases, the plastic rotation increases significantly. Therefore, a careful attention would be paid to determine the limit values of material characteristics in the RC structures.

A case of Obturator using Swing-lock Attachment for Par tial Edentulous Patient with Hemi-Maxillectomy Patient (Hemi-Maxillectomy 부분무치악 환자의 Swing-Lock Attachment를 이용한 Obturator 수복 증례)

  • Oh, Byung-Doo;Lim, Jong-Hwa;Shin, Soo-Yeon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.1
    • /
    • pp.33-38
    • /
    • 2010
  • Maxillectomy is a treatment option for maxillary cancer, which leaves the patient with a palatal defect. It may cause problems with facial deformation, swallowing, mastication, and speech. These functional problems and changes in appearance may result in psychological problems. To control these deficits after maxillectomy, surgical reconstruction or prosthodontic treatment can be chosen as a treatment option. Obturator prosthesis has been used as a preferred method of rehabilitation for most maxillectomy patients. This case is a patient who was classified Aramany classification II hemi-maxillectomy patient with residual teeth from #11-25, whose teeth had substantial labioversion and clinically lengthened from alveolar bone involution, thus making it hard to select proper framework design and resist to the rotational dislodging force of the obturator. Therefore we selected swing-lock attachment design to remain pre-existing crown and bridges and obtain retention and stability of obturator. The swing-lock RPD is economical than the conventional RPD because we can remain pre-existing crown and bridges. And residual teeth which have mobility and poor prognosis can be successfully retained through properly designed swing-lock RPD as it is functioning as a removable splint on the teeth.