DOI QR코드

DOI QR Code

Effects of Earth's Atmosphere on Terrestrial Reference Frame : A Review

지구 대기가 지구 기준계에 미치는 영향 : 기존 모델 분석

  • 나성호 (아주대학교/과학기술연합대학교) ;
  • 조정호 (한국천문연구원)
  • Received : 2015.07.23
  • Accepted : 2015.08.25
  • Published : 2015.08.31

Abstract

Displacement of the Earth's surface due to atmospheric loading has been recognized since a century years ago, and its accurate estimation is required in present day geodesy and surveying, particularly in space geodesy. Atmospheric load deformation in continental region can readily be calculated with the given atmospheric pressure field and the load Green's function, and, in near coastal area, approximate model is used for the calculation. The changes in the Earth's atmospheric circulation and the seasonal variation of atmospheric pressure on two hemispheres of the Earth are the each main causes of variation of the Earth's spin angular velocity and polar motion respectively. Wind and atmospheric pressure do the major role in other periodic and non-periodic perturbations of the positions in the Earth's reference frame and variations in the Earth's spin rotational state. In this reviewing study, the developments of related theories and models are summarized along with brief description of phenomena, and the geodetic perturbing effects of a hypothetical typhoon passing Korea are shown as an example. Finally related existing problems and further necessary studies are discussed in general.

지구대기압력이 지각에 변위를 일으키는 현상은 오래 전부터 인식되었으며, 근래의 측지-측량, 특히 우주측지에서 이의 정확한 산정이 필요하게 되었다. 육지에서의 대기 하중에 의한 변형은 주어진 대기압 분포와 하중함수로부터 바로 계산할 수 있으며, 해양에 근접한 지역에서는 근사적인 모델이 사용되고 있다. 지구 대기대순환의 변화와 계절별 지구 양반구에서의 대기압의 분포의 변화들이 각각 지구자전속도 변화와 극운동의 가장 큰 요인으로 알려져 있으며, 바람과 대기압의 변화는 여러 주기영역에서 지구상의 지점들의 좌표의 섭동 및 지구자전상태의 큰 변화 요인이 되고 있다. 본 연구에서는 이와 같은 현상들을 기술하며 관련된 이론과 모델들을 요약하고, 또한 한반도를 지나가는 가상적인 태풍에 의한 효과를 예시하였다. 마지막으로 관련된 몇몇 문제점들과 향후 연구방향을 논의하였다.

Keywords

References

  1. Barnes, R. T. H., Hide, R., White, A. A., and Wilson, C. A., 1983, Atmospheric angular momentum fluctuation, length-ofday changes and polar motions, Proceedings Royal Society London, A 387, 31-73.
  2. Bock, D., Noomen, R., and Scherneck, H.-G., 2005, Atmospheric pressure loading displacement of SLR stations, Journal of Geodynamics, 39, 247-266. https://doi.org/10.1016/j.jog.2004.11.004
  3. Brzezinski, A., Bizouard, C., and Petrov, S., 2002, Influence of the atmosphere on Earth rotation: What new can be learned from the recent atmospheric angular momentum estimates?, Surveys in Geophysics, 23, 33-69. https://doi.org/10.1023/A:1014847319391
  4. Chao, B. F., 2003, Geodesy Is Not Just For Static Measurements Anymore, EOS Transactions AGU, 84(16), 146-156.
  5. Dehant, V., and Mathews, P. M., 2009, Earth Rotation Variations, Ch. 10 of Treatise of Geophysics vol. 3 Geodesy, Elsevier, Amsterdam.
  6. de Viron, O. C., Bizouard, C., Salstein, D. A., and Dehant, V., 1999, Atmospheric torque on the Earth and comparison with angular momentum variation, Journal of Geophysical Research, 104(B3), 4861-4875. https://doi.org/10.1029/1998JB900063
  7. Farrell, W., 1972, Deformation of the Earth by Surface Loads, Review of Geophysics and Space Physics, 10, 761-797. https://doi.org/10.1029/RG010i003p00761
  8. Gross, R. S., and Lindqwister, 1992, Atmospheric excitation of polar motion during the GIG '91 measurement campaign, Geophysical Research Letters, 19, 849-852. https://doi.org/10.1029/92GL00935
  9. Gross, R. S., Marcus, S. L., Eubanks, T. M., Dickey, J. O., and Keppenne, C. L., 1996, Detection of an ENSO signal in seasonal length-of-day variation, Geophysical Research Letters, 23, 3373-3376. https://doi.org/10.1029/96GL03260
  10. Gross, R. S., 2009, Earth Rotation Variations - Long Period, Ch. 9 of Treatise of Geophysics vol. 3 Geodesy, Elsevier, Amsterdam.
  11. Guo, J. Y., Li, Y. B., Huang, Y., Deng, H. T., Xu, S. Q., and Ning, J. S., 2004, Green's function of the deformation of the Earth as a result of atmospheric loading, Geophysical Journal International, 159, 53-68, doi: 10.1111/j.1365-246X.2004.02410.x.
  12. Hide, R., and Dickey, J. O., 1991, Earth's variable rotation, Science, 253, 629-637. https://doi.org/10.1126/science.253.5020.629
  13. Kim, K. H., and Park, K. D., Precision Improvement of GPS Height Time Series by Correcting for Atmospheric Pressure Loading Displacements, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 27, 599-605. (in Korean)
  14. Lambeck, K., 1980, The Earth's Variable Rotation, Cambridge University Press, Cambridge.
  15. Longman, I. M., 1962, A Green's function for determining the deformation of the Earth under surface mass loads: 1 Theory, Journal of Geophysical Research, 62, 845-850.
  16. Love, A. E. H., 1911, Some Problems of Geodynamics, Cambridge University Press (Dover reprint).
  17. Munk, W. H., and MacDonald, G. J. F., 1960, The Rotation of the Earth, Cambridge University Press, Cambridge.
  18. Na, S., and Baek, J., 2011, Computation of the Load Love Number and the Load Green's Function for an Elastic and Spherically Symmetric Earth, Journal of the Korean Physical Society, 58, 1195-1205, doi: 10.3938/jkps.58.1195.
  19. Pagiatakis, S. D., 1990, The response of a realistic earth to ocean tide loading, Geophysical Journal International, 103, 541-560. https://doi.org/10.1111/j.1365-246X.1990.tb01790.x
  20. Petit, G., and Luzum, B., 2010, IERS Conventions (2010), IERS Conventions Centre, Frankfurt am Main.
  21. Petrov, L., and Boy, J. P., 2004, Study of the atmospheric pressure loading signal in very long baseline interferometry observations, Journal of Geophysical Research, 109, B03405, doi: 10.1029/2003JB002500.
  22. Ponte, R. M., and Ray R. D., 2002, Atmospheric pressure corrections in geodesy and oceanography: A strategy for handling air tides, Geophysical Research Letters, 29(24), 2153, doi:10.1029/2002GL016340.
  23. Ray, R. D., and Ponte, R. M., 2003, Barometric tides from ECMWF operational analyses, Annals of Geophysics, 21, 1897-1910, doi:10.5194/angeo-21-1897-2003.
  24. Rosen, R. D., 1993, The Axial Momentum Balance of Earth and its Fluid Envelope, Surveys in Geophysics, 14, 1-29. https://doi.org/10.1007/BF01044076
  25. Salstein, D., 2005, Computing Atmospheric Excitation Functions for Earth Rotation/Polar Motion, Forcing of polar motion in the Chandler frequency band, ed. by Plag, H. P., Gross, R. and van Dam, T., The European center for Geodynamics and Seismology, Luxembourg.
  26. Schindelegger, M., Boehm, S., Boehm, J., and Schuh, H., 2013, Atmosphere Effects on Earth Rotation, Atmospheric Effects in Space Geodesy, ed. by Boehm, J. and Schuh, H., Springer.
  27. Schindelegger, M., 2014, Atmosphere-induced short period variations of Earth rotation, PhD thesis, Vienna University of Technology.
  28. Tregoning, P., and van Dam, T., 2005, Atmospheric pressure loading corrections applied to GPS data at the observation level, Geophysical Research Letters, 32, L22310, doi:10.1029/2005GL024104.
  29. van Dam, T. M., and Wahr, J. M., 1987, Displacements of the Earth's Surface Due to Atmospheric Loading: Effects on Gravity and Baseline Measurements, Journal of Geophysical Research, 92(B2), 1281-1286. https://doi.org/10.1029/JB092iB02p01281
  30. van Dam, T. M., and Herring, T. A., 1994a, Detection of atmospheric loading using very long baseline interferometry measurements, Journal of Geophysical Research, 99(B3), 4505-4517. https://doi.org/10.1029/93JB02758
  31. van Dam, T. M., Blewitt, G., and Heflin, M. B., 1994b, Atmospheric pressure loading effects on Global Positioning System coordinate determinations, Journal of Geophysical Research, 99(B12), 23939-23950. https://doi.org/10.1029/94JB02122
  32. van Dam, T. M., Altamimi, Z., Collilieux, X., and Ray, J., 2010, Topographically induced height errors in predicted atmospheric loading effects, Journal of Geophysical Research, 115, B07415, doi:10.1029/2009JB006810.
  33. Wijaya, D. D., Boehm, J., Karbon, M., Krasna, H., and Schuh, H., 2013, Atmospheric Pressure Loading, Atmospheric Effects in Space Geodesy, ed. by Boehm, J. and Schuh, H., Springer.
  34. Wunsch, C., and Stammer, D., 1997, Atmospheric Loading and The Oceanic "Inverted Barometer" Effect, Review of Geophysics, 35, 79-107. https://doi.org/10.1029/96RG03037