Browse > Article
http://dx.doi.org/10.7582/GGE.2015.18.3.133

Effects of Earth's Atmosphere on Terrestrial Reference Frame : A Review  

Na, Sung-Ho (Ajou University, UST)
Cho, Jungho (Korea Astronomy and Space Science Institute)
Publication Information
Geophysics and Geophysical Exploration / v.18, no.3, 2015 , pp. 133-142 More about this Journal
Abstract
Displacement of the Earth's surface due to atmospheric loading has been recognized since a century years ago, and its accurate estimation is required in present day geodesy and surveying, particularly in space geodesy. Atmospheric load deformation in continental region can readily be calculated with the given atmospheric pressure field and the load Green's function, and, in near coastal area, approximate model is used for the calculation. The changes in the Earth's atmospheric circulation and the seasonal variation of atmospheric pressure on two hemispheres of the Earth are the each main causes of variation of the Earth's spin angular velocity and polar motion respectively. Wind and atmospheric pressure do the major role in other periodic and non-periodic perturbations of the positions in the Earth's reference frame and variations in the Earth's spin rotational state. In this reviewing study, the developments of related theories and models are summarized along with brief description of phenomena, and the geodetic perturbing effects of a hypothetical typhoon passing Korea are shown as an example. Finally related existing problems and further necessary studies are discussed in general.
Keywords
Terrestrial reference frame; atmosphere; crustal displacement; earth rotation variation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Barnes, R. T. H., Hide, R., White, A. A., and Wilson, C. A., 1983, Atmospheric angular momentum fluctuation, length-ofday changes and polar motions, Proceedings Royal Society London, A 387, 31-73.
2 Bock, D., Noomen, R., and Scherneck, H.-G., 2005, Atmospheric pressure loading displacement of SLR stations, Journal of Geodynamics, 39, 247-266.   DOI
3 Brzezinski, A., Bizouard, C., and Petrov, S., 2002, Influence of the atmosphere on Earth rotation: What new can be learned from the recent atmospheric angular momentum estimates?, Surveys in Geophysics, 23, 33-69.   DOI
4 Chao, B. F., 2003, Geodesy Is Not Just For Static Measurements Anymore, EOS Transactions AGU, 84(16), 146-156.
5 Dehant, V., and Mathews, P. M., 2009, Earth Rotation Variations, Ch. 10 of Treatise of Geophysics vol. 3 Geodesy, Elsevier, Amsterdam.
6 de Viron, O. C., Bizouard, C., Salstein, D. A., and Dehant, V., 1999, Atmospheric torque on the Earth and comparison with angular momentum variation, Journal of Geophysical Research, 104(B3), 4861-4875.   DOI
7 Farrell, W., 1972, Deformation of the Earth by Surface Loads, Review of Geophysics and Space Physics, 10, 761-797.   DOI
8 Gross, R. S., and Lindqwister, 1992, Atmospheric excitation of polar motion during the GIG '91 measurement campaign, Geophysical Research Letters, 19, 849-852.   DOI
9 Gross, R. S., Marcus, S. L., Eubanks, T. M., Dickey, J. O., and Keppenne, C. L., 1996, Detection of an ENSO signal in seasonal length-of-day variation, Geophysical Research Letters, 23, 3373-3376.   DOI
10 Gross, R. S., 2009, Earth Rotation Variations - Long Period, Ch. 9 of Treatise of Geophysics vol. 3 Geodesy, Elsevier, Amsterdam.
11 Guo, J. Y., Li, Y. B., Huang, Y., Deng, H. T., Xu, S. Q., and Ning, J. S., 2004, Green's function of the deformation of the Earth as a result of atmospheric loading, Geophysical Journal International, 159, 53-68, doi: 10.1111/j.1365-246X.2004.02410.x.   DOI
12 Hide, R., and Dickey, J. O., 1991, Earth's variable rotation, Science, 253, 629-637.   DOI
13 Kim, K. H., and Park, K. D., Precision Improvement of GPS Height Time Series by Correcting for Atmospheric Pressure Loading Displacements, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 27, 599-605. (in Korean)
14 Munk, W. H., and MacDonald, G. J. F., 1960, The Rotation of the Earth, Cambridge University Press, Cambridge.
15 Lambeck, K., 1980, The Earth's Variable Rotation, Cambridge University Press, Cambridge.
16 Longman, I. M., 1962, A Green's function for determining the deformation of the Earth under surface mass loads: 1 Theory, Journal of Geophysical Research, 62, 845-850.
17 Love, A. E. H., 1911, Some Problems of Geodynamics, Cambridge University Press (Dover reprint).
18 Na, S., and Baek, J., 2011, Computation of the Load Love Number and the Load Green's Function for an Elastic and Spherically Symmetric Earth, Journal of the Korean Physical Society, 58, 1195-1205, doi: 10.3938/jkps.58.1195.   DOI   ScienceOn
19 Pagiatakis, S. D., 1990, The response of a realistic earth to ocean tide loading, Geophysical Journal International, 103, 541-560.   DOI
20 Petit, G., and Luzum, B., 2010, IERS Conventions (2010), IERS Conventions Centre, Frankfurt am Main.
21 Petrov, L., and Boy, J. P., 2004, Study of the atmospheric pressure loading signal in very long baseline interferometry observations, Journal of Geophysical Research, 109, B03405, doi: 10.1029/2003JB002500.   DOI
22 Ponte, R. M., and Ray R. D., 2002, Atmospheric pressure corrections in geodesy and oceanography: A strategy for handling air tides, Geophysical Research Letters, 29(24), 2153, doi:10.1029/2002GL016340.   DOI
23 Ray, R. D., and Ponte, R. M., 2003, Barometric tides from ECMWF operational analyses, Annals of Geophysics, 21, 1897-1910, doi:10.5194/angeo-21-1897-2003.   DOI
24 Schindelegger, M., 2014, Atmosphere-induced short period variations of Earth rotation, PhD thesis, Vienna University of Technology.
25 Rosen, R. D., 1993, The Axial Momentum Balance of Earth and its Fluid Envelope, Surveys in Geophysics, 14, 1-29.   DOI
26 Salstein, D., 2005, Computing Atmospheric Excitation Functions for Earth Rotation/Polar Motion, Forcing of polar motion in the Chandler frequency band, ed. by Plag, H. P., Gross, R. and van Dam, T., The European center for Geodynamics and Seismology, Luxembourg.
27 Schindelegger, M., Boehm, S., Boehm, J., and Schuh, H., 2013, Atmosphere Effects on Earth Rotation, Atmospheric Effects in Space Geodesy, ed. by Boehm, J. and Schuh, H., Springer.
28 Tregoning, P., and van Dam, T., 2005, Atmospheric pressure loading corrections applied to GPS data at the observation level, Geophysical Research Letters, 32, L22310, doi:10.1029/2005GL024104.   DOI
29 van Dam, T. M., and Wahr, J. M., 1987, Displacements of the Earth's Surface Due to Atmospheric Loading: Effects on Gravity and Baseline Measurements, Journal of Geophysical Research, 92(B2), 1281-1286.   DOI
30 van Dam, T. M., and Herring, T. A., 1994a, Detection of atmospheric loading using very long baseline interferometry measurements, Journal of Geophysical Research, 99(B3), 4505-4517.   DOI
31 van Dam, T. M., Blewitt, G., and Heflin, M. B., 1994b, Atmospheric pressure loading effects on Global Positioning System coordinate determinations, Journal of Geophysical Research, 99(B12), 23939-23950.   DOI
32 van Dam, T. M., Altamimi, Z., Collilieux, X., and Ray, J., 2010, Topographically induced height errors in predicted atmospheric loading effects, Journal of Geophysical Research, 115, B07415, doi:10.1029/2009JB006810.   DOI
33 Wunsch, C., and Stammer, D., 1997, Atmospheric Loading and The Oceanic "Inverted Barometer" Effect, Review of Geophysics, 35, 79-107.   DOI
34 Wijaya, D. D., Boehm, J., Karbon, M., Krasna, H., and Schuh, H., 2013, Atmospheric Pressure Loading, Atmospheric Effects in Space Geodesy, ed. by Boehm, J. and Schuh, H., Springer.