• 제목/요약/키워드: rotating blade

검색결과 450건 처리시간 0.053초

고온에서 외부 가진력을 받는 회전하는 경사기능 박간 블레이드의 동적응답 해석 (Dynamic Response Analysis of Rotating Functionally Graded Thin-Walled Blades Exposed to Steady High Temperature and External Excitation)

  • 나성수;오병영
    • 대한기계학회논문집A
    • /
    • 제29권7호
    • /
    • pp.976-982
    • /
    • 2005
  • This paper is dedicated to the thermoelastic modeling and dynamic response of the rotating blades made of functionally graded ceramic-metal based materials. The blades are modeled as non-uniform thin walled beams fixed at the hub with various selected values of setting angles and pre-twisted angles. In this study, the blade is rotating with a constant angular velocity and exposed to a steady temperature field as well as external excitation. Moreover, the effect of the temperature gradient through the blade thickness is considered. Material properties are graded in the thickness direction of the blade according to the volume fraction power law distribution. The numerical results highlight the effects of the volume fraction, temperature gradient, taper ratio, setting angle and pre-twisted angle on the dynamic response of bending-bending coupled beam characteristics and pertinent conclusions are outlined.

회전하는 복합재 블레이드의 열진동 해석 및 제어 (Thermally-Induced Vibration Control of Rotating Composite Thin-Walled Blade)

  • 정회도;나성수;곽문규;허석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1696-1701
    • /
    • 2003
  • This paper deals with a vibration control analysis of a rotating composite blade, modeled as a tapered thinwalled beam induced by heat flux. The displayed results reveal that the thermally induced vibration yields a detrimental repercussions upon their dynamic responses. The blade consists of host graphite epoxy laminate with surface and spanwise distributed transversely isotropic (PZT-4) sensors and actuators. The controller is implemented via the negative velocity and displacement feedback control methodology, which prove to overcome the deleterious effect associated with the thermally induced vibration. The structure is modeled as a composite thin-walled beam incorporating a number of nonclassical features such as transverse shear, secondary warping, anisotropy of constituent materials, and rotary inertias.

  • PDF

LP Compressor Blade Vibration Characteristics at Starting Conditions of a 100 MW Heavy-duty Gas Turbine

  • Lee, An-Sung
    • Journal of Mechanical Science and Technology
    • /
    • 제18권6호
    • /
    • pp.895-903
    • /
    • 2004
  • In this paper are presented the blade vibration characteristics at the starting conditions of the low pressure multistage axial compressor of heavy-duty 100 MW gas turbine. Vibration data have been collected through strain gauges during aerodynamic tests of the model compressor. The influences of operating modes at the starting conditions are investigated upon the compressor blade vibrations. The exciting mechanisms and features of blade vibrations are investigated at the surge, rotating stall, and buffeting flutter. The influences of operating modes upon blade dynamic stresses are investigated for the first and second stages. It is shown that a high dynamic stress peak of 120 MPa can occur in the first stage blades due to resonances with stall cell excitations or with inlet strut wake excitations at the stalled conditions.

공진 주파수 영역에서 탄성지지단의 마찰감쇠효과를 고려한 회전 블레이드의 과도응답해석 (Transient Response Analysis of Rotating Blade Considering Friction Damping Effect of Elastically Restrained Root in Resonant Frequency Range)

  • 윤경재
    • 한국군사과학기술학회지
    • /
    • 제6권4호
    • /
    • pp.100-112
    • /
    • 2003
  • This paper presents the transient response analysis of a rotating blade in resonant frequency range. It is shown that the modeling is considered in elastic foundation and friction damping effect. The equations of motion are derived and transformed into a dimensionless form to investigate general phenomena. Numerical results show that the magnitude of friction damping to reduce maximum transient response in near the critical angular speed. The method can be applied to a number of examples of the practical rotating blade system to minimize transient response in resonant frequency range.

비틀림이 있는 회전블레이드의 열 효과를 고려한 진동 특성 (Thermal Effect on the Vibration Characteristics of Twisted Rotating Blade)

  • Kee, Young-Jung;Kim, Ji-Hwan
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.380.1-380
    • /
    • 2002
  • Vibration analysis of rotating blade is the main purpose of present study. In this work, general formulation is proposed to analyze rotating shell type structures including the centrifugal force, Coriolis acceleration and initial twist. Futhermore, simplified equations are derived for the case of an open circular cylindrical shell. Based on the concept of degenerated shell element with the Reissner-Mindlin's assumptions, the finite element method is adopted for solving the governing equations. (onitted)

  • PDF

허브와 중앙스팬 사이의 회전익 후류 3차원 난류유동해석에 관한 연구 (A study on the three dimensional turbulent flow analysis of wake flow behind rotating blade row between hub and midspan)

  • 노수혁;조강래
    • 대한기계학회논문집B
    • /
    • 제21권7호
    • /
    • pp.911-918
    • /
    • 1997
  • The turbulent viscous wake flows behind a single airfoil, two-dimensional stationary blade row and three-dimensional rotating blade row were calculated, and the numerical results were compared with experimental ones. The numerical technique was based on the SIMPLE algorithm using three turbulent closure models, standard k-.epsilon. model(WFM), low Reynolds number k-.epsilon. model(LRN) and Reynolds stress model (RSM). In the case of a single airfoil, WFM, LRN and RSM presented fairly good velocity distributions in the wake compared with experimental data. In the case of the stationary blade row, LRN and RSM presented better results than WFM for wake velocity distribution, and especially LRN showed best results among these three turbulent models. In the case of the rotating blade row, WFM and LRN showed fairly good agreement with experimental data of the three-dimensional velocity component distributions in the range from hub to mid span region. LRN was also superior to WFM in accuracy of prediction for the wake velocity distribution as same with the cases of a airfoil and the stationary blade row.

Paddle형 복합재료 헬리콥터 로터 블레이드 저진동 설계 기술 연구 (A Study on the Low Vibration Design of Paddle Type Composite Rotor Blade for Helicopter)

  • 김덕관;주진;이명규;홍단비
    • 한국항공우주학회지
    • /
    • 제31권4호
    • /
    • pp.99-104
    • /
    • 2003
  • 본 논문은 헬리콥터 로터 시스템 설계시 고려해야 할 구조동역학 분야와 차세대 저진동 블레이드를 설계하는 과정을 소개하였다. 일반적으로 로터 시스템 설계시 허브 하중 최소화, 지상공진 방지 및 저진동 특성 등을 만족하도록 고유 진동수 범위를 정하게 된다. 먼저 로터 시스템에 대한 회전수별 고유 진동수 도표를 통해 로터 회전 속도와 공진영역이 생기지 않도록 설계하며 다음으로 동체에 전달되는 진동 하중 크기를 예측하기 위해 회전시 블레이드에서 발생되는 하중을 허브 중심의 비회전계 좌표축 성분으로 전환한다. 헬리콥터 전진 비행속도에 따라 동체에 전달되는 하중 크기를 구하고 동체를 강체로 모델링하여 조종속에서 발생되는 가속도를 계산함으로써 저진동 특성을 예측하였다. 본 설계기법은 현재 수행중인 차세대 로터 시스템 개발에 적용되고 있으며 향후 국내 개발 로터 시스템에 유용하게 적용될 것이다.

운전온도와 세라믹 입자크기를 고려한 회전하는 경사기능성 가스터빈 블레이드의 응력해석 (Temperature-Dependent Stress Analysis of Rotating Functionally Graded Material Gas Turbine Blade Considering Operating Temperature and Ceramic Particle Size)

  • 이기복;유홍희
    • 대한기계학회논문집A
    • /
    • 제38권2호
    • /
    • pp.193-203
    • /
    • 2014
  • 터빈의 운전온도와 세라믹 입자크기를 고려한 경사기능재료(FGM)로 만들어진 회전하는 가스터빈 블레이드의 열전달해석 및 응력해석을 수행하였다. 경사기능성 블레이드는 벽 두께에 따라서 연속적인 재료물성 변화를 나타낸다. 이러한 경사기능재료의 특성과 온도에 따른 열전 재료물성 변화를 고려하여 블레이드의 시스템 강성을 얻기 위해 블레이드의 열전달해석을 먼저 수행하였다. 이 열전달해석으로 얻은 시스템 강성으로부터 복합 변형 변수를 사용한 회전하는 가스터빈 블레이드의 운동방정식을 유도하였다. 유도된 운동방정식은 상용 유한요소 모델과 해석결과 비교를 통해 그 정확성을 입증하였으며 회전주파수와 구배 지수에 따른 최대 응력의 변화를 조사하였다. 또한, 열전달해석을 통해 가장 낮은 블레이드 온도를 나타내는 구배 지수를 조사하였다.

헬리콥터 Blade의 모드해석에 적용된 응력패턴해석 계측기법의 타당성 (Validation of the Strain Pattern Analysis (SPA) Measuring Technique)

  • Pakshir, Nabi
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 춘계학술대회논문집; 부산수산대학교, 10 May 1996
    • /
    • pp.361-369
    • /
    • 1996
  • The accurate prediction of modal parameters of a rotating blade is an important requirement in the assessment of the dynamics of a helicopter rotor. Indeed, predictions of flight loads and stability are normally dependent on initially predicting the undamped mode shapes. A measuring technique, known as Strain Pattern Analysis (SPA), appears to be the most successful technique for measuring the mode shapes of rotating blades. This method was developed to be used on actual aircraft so no attempt was made to measure rotating mode shapes directly in order to validate the SPA method. This report summarizes results from experimental investigations which were carried out to validate the SPA method for the prediction of aerodynamically damped modes of a rotating blade. A series of modal tests were carried out on two rotor models in which the non-rotating, undamped and aerodynamically damped rotating modes were measured directly (strain and displacement patterns). It is shown that the SPA method to be very successful in itself but there are a number of limitations in validating this technique. To provide data which could be used to confidently validate theoretical prediction codes, existing limitations should be addressed.

  • PDF

회전하는 익차의 유한요소 진동해석 기법 (A Method for Finite Element Vibration Analysis of Rotating Blade Disks)

  • 김창부;안영철;이동환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 추계학술대회논문집; 한국과학기술회관; 6 Nov. 1997
    • /
    • pp.88-95
    • /
    • 1997
  • In this paper, we present an efficient method for finite element vibration analysis of constantly rotating blade disks which are deformed to some considerable extent by centrifugal force, Coriolis force and operating load, and vibrate due to several types of exciting forces. A blade disk which is a structure with cyclic symmetry is divided into substructures with the same geometry. Only one substructure is modeled and can be analysed rapidly and exactly using discrete Fourier transform by means of a computer with small memory.

  • PDF