• 제목/요약/키워드: rotating

검색결과 5,051건 처리시간 0.043초

크랙을 가진 회전 외팔보의 동특성 해석 (Dynamic Behavior of Rotating Cantilever Beam with Crack)

  • 윤한익;손인수
    • 한국소음진동공학회논문집
    • /
    • 제15권5호
    • /
    • pp.620-628
    • /
    • 2005
  • In this paper, we studied about the dynamic behavior of a cracked rotating cantilever beam. The influences of a rotating angular velocity, the crack depth and the crack position on the dynamic behavior of a cracked cantilever beam have been studied by the numerical method. The equation of motion is derived by using the Lagrange's equation. The cracked cantilever beam is modeled by the Euler-Bernoulli beam theory. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. The lateral tip-displacement and the axial tip-deflection of a rotating cantilever beam is more sensitive to the rotating angular velocity than the depth and position of crack. Totally, as the crack depth is increased, the natural frequency of a rotating cantilever beam is decreased in the first and second mode of vibration. When the crack depth is constant, the natural frequencies of a rotating cantilever beam are proportional to the rotating angular velocity in the each direction.

회전하는 강체허브에서 전개하는 보 끝단의 직선궤적오차 저감 (Straight-line Path Error Reduction for the End of a Flexible Beam Deploying from a Rotating Rigid Hub)

  • 김병진;김형래;정진태
    • 한국소음진동공학회논문집
    • /
    • 제24권11호
    • /
    • pp.898-906
    • /
    • 2014
  • This paper presents a reduction method for a straight-line path error of a flexible beam deploying from a rotating rigid hub. Previous studies discussed about only vibration phenomena of flexible beams deploying from rotating hubs; however, this study investigates a vibration reduction of a rotating beam with variable length. The equation of motion and associated boundary conditions are derived for a flexible beam deploying from a rotating rigid hub, and then they are transformed to a variational equation. By applying the Galerkin method, the discretized equations are obtained from the variational equation. Based on the discretized equations, the dynamic responses of a rotating/deploying beam are analyzed when the beam end has a straight line motion. A reduction method for the trajectory error is proposed, using the average length of a rotating/deploying beam. It is shown that the proposed method is able to reduce the residual vibration of a rotating/deploying beam.

자유흐름 속도의 이동면과 맞닿은 회전실린더 주위 유동장의 실험적 해석 (An experimental study of a flow field generated by a rotating cylinder on a plane moving at free stream velocity)

  • 박운진
    • 대한기계학회논문집B
    • /
    • 제21권5호
    • /
    • pp.700-712
    • /
    • 1997
  • The flowfield generated by a 2-D rotating cylinder on a plane moving at freestream velocity was experimentally investigated in a wind tunnel to simulate aerodynamic characteristics of rotating wheels of an automobile. In the flowfield around a rotating cylinder at 3*10$^{3}$ < Re$_{d}$<8*10$^{3}$, unique mean flow and turbulence characteristics were confirmed by hot-wire measurements as well as frequency analysis, which was supported by flow visualization. In the vicinity of a rotating cylinder, a unique turbulence structure on .root.over bar u'$^{2}$ profiles was formed in hump-like shape at 1 < y/d < 3. A peak frequency which characterized the effect of a rotating cylinder had the same value of the rotation rate of a cylinder. In case of cylinder rotation, the depths of mean velocity -defect and turbulent-shear regions were thickened by 20-40% at 0 < x/d < 10 compared with the case of cylinder stationary. Far downstream beyond x/d > 10, the flowfield generated by a rotating cylinder showed self-similarity in the profiles of mean velocity and turbulence quantities. The effect of a rotating cylinder was independent of its rotation rate and Reynolds number in the measurement range.

크랙을 가진 회전 외팔보의 동특성해석 (Dynamic Behavior of Rotating Cantilever Beam with Crack)

  • 손인수;윤한익
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.707-710
    • /
    • 2005
  • In this paper, we studied about the dynamic behavior of a cracked rotating cantilever beam. The influences of a rotating angular velocity, the crack depth and the crack position on the dynamic behavior of a cracked cantilever beam have been studied by the numerical method. The cracked cantilever beam is modeled by the Euler-Bernoulli beam theory. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. The lateral tip displacement and the axial tip deflection of a rotating cantilever beam is more sensitive to the rotating angular velocity than the depth and position of crack. Totally, as the crack depth is increased, the natural frequency of a rotating cantilever beam is decreased in the first and second mode of vibration.

  • PDF

Bimorph 피에조 소자를 이용한 빔 회전 구동기의 개발 (The Development of the Beam Rotating Actuator Based on the Bimorph Piezo Material)

  • 이정현;한창수;김수현;곽윤근
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.450-453
    • /
    • 1995
  • The beam rotating actuator, which can be utilized to improve the data transfer rate for the optical disk systems, has been developed. It can employ a newly developed laser beam rotating actuator for putting multi-beam spots on more than one track on the optical disk simultaneously. Therefore, It has to maintain up to .+-.0.01 .deg. resolution and high bandwidth performance. In this these, the Dove prism is used for the beam rotating actuator based on bimorph piezo material. The performance of the beam rotating actuator is verified since the dynamics ferquency performance is measured using the dynamic analyzer and the attached stain gage sensor. the beam rotating angle performance is also examined since the long range beam reflection character is utilized.

  • PDF

피터아이젠만 건축의 실내 공간에 사용된 축에 관한 연구 (A Study on the Axis Used for Interior Spaces of Peter Eisenman Architecture)

  • 이종란
    • 한국디지털건축인테리어학회논문집
    • /
    • 제11권4호
    • /
    • pp.39-46
    • /
    • 2011
  • This Study is about the Axis used for creating forms of interior spaces in representative works of Peter Eisenman architecture. The plans, elevations, photos of interior spaces of his architecture were collected and analysed. In conclusion, the methods using axises were classified in the axises crossing right angle and the rotating axises crossing right angle. The rotating axis were divided into one-angle rotating and multi-angle rotating. The axises were rotated on the plan or rotated on the elevation. The axises crossing right angle were used for dividing, assembling, transforming and composing different proportions of rectangles in interior spaces. The rotating axises crossing right angle were used for creating divers forms such as triangle, quadrilateral, and polygon. The one-angle rotating emphasizes directions of axises in interior spaces. The multi-angle rotating emphasizes decentered directions in interior spaces. The parts created while crossing axises three-dimensionally were opened or filled. The axises were used dynamically and three-dimensionally for diversity of forms in interior spaces of Peter Eisenman architecture.

회전 외팔보의 진동 및 응력 특성을 고려한 형상 최적화 (Shape Optimization of a Rotating Cantilever Beam Considering Its Modal and Stress Characteristics)

  • 윤영훈;유홍희
    • 대한기계학회논문집A
    • /
    • 제25권4호
    • /
    • pp.645-653
    • /
    • 2001
  • It is well known that natural frequencies increase when a cantilever beam rotates about the axis perpendicular to its longitudinal axis. Such phenomena that are caused by centrifugal inertia forces are often referred to as the stiffening effects. Occasionally it is necessary to control the variation of a natural frequency or the maximum stress of a rotating beam. By changing the thickness of the rotating beam, the modal or the stress characteristics can be changed. The thickness of the rotating beam is assumed to be a cubic spline function in the present work. An optimization method is employed to find the optimal thickness shape of the rotating beam. This method can be utilized for the design of rotating structures such as turbine blades and aircraft rotary wings.

복합적층 회전원판의 응력 및 진동 해석 (Stress and Vibration Analysis of Rotating Laminated Composite Disks)

  • 구교남
    • 한국소음진동공학회논문집
    • /
    • 제16권9호
    • /
    • pp.982-989
    • /
    • 2006
  • The centrifugal force acting on a rotating disk creates the in-plane loads in radial and circumferential directions. Application of fiber reinforced composite materials to the rotating disk can satisfy the demand for the increment of its rotating speed. However, the existing researches have been confined to lamina disks. This paper deals with the stress and vibration analysis of rotating laminated composite disks. The maximum strain theory for failure criterion is applied to determine the strength of the laminate disk from which the maximum allowable speed is obtained. Dynamic equation is formulated in order to calculate the natural frequency and critical speed for rotating laminated disks. The Galerkin method is applied to obtain the series solution. The numerical results are given for the cross-ply laminated composite disks.

진동 특성을 고려한 회전 외팔보 형상의 최적화 (Shape Optimization of a Rotating Cantilever Beam Considering Its Modal Characteristics)

  • 윤영훈;유홍희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.643-648
    • /
    • 2000
  • It is well known that natural frequencies increase when a cantilever beam rotates about the axis perpendicular to its longitudinal axis. Such phenomena that are caused by centrifugal inertia forces are often referred to as the stiffening effects. Occasionally it is necessary to control the variation of a natural frequency of a rotating beam. By changing the thickness of the rotating beam, the modal characteristics can be changed. The thickness of the rotating beam is assumed to be a cubic spline function in the present work. An optimization method is employed to find the optimal thickness shape of the rotating beam. This method can be utilized usefully for the design of rotating structures such as turbine blades and aircraft rotary wings.

  • PDF

편심환내의 회전 유동 (Rotating Flows in Eccentric Cylinders)

  • 심우건
    • 한국생산제조학회지
    • /
    • 제6권3호
    • /
    • pp.9-16
    • /
    • 1997
  • A numerical method based on the spectral collocation method is developed for the steady rotating flows in eccentric annulus. Steady flows between rotating cylinders are of interest on lubrication in large rotating machinery. Steady rotating flow is generated by the rotating inner cylinder with constant angular velocity. The governing equations for laminar flow are simplified from Navier-Stokes equations by neglecting the non-linear convection terms. Integrating the pressure round the rotating cylinder based on the half Sommerfeld method, the load on the cylinder is evaluated with eccentricity. The attitude angle and Sommerfeld variable are calculated from the load. It is found that those values are influenced by the eccentricity. The attitude and Sommerfeld reciprocal are decreased with eccentricity. As expected, the effect of the annular gap ratio on them is negligible.

  • PDF