• Title/Summary/Keyword: root growth

Search Result 3,881, Processing Time 0.028 seconds

Effect of Space Limitation of Rhizosphere on Morphology and Development of Root System in Tobacco Seedlings (담배 육묘시 근권의 공간 제한이 근계의 형태와 발달에 미치는 영향)

  • 이상각;심상인;강병화
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.4
    • /
    • pp.475-481
    • /
    • 1996
  • This study was carried out to acquire the basic information of root growth under different pot size, imposing different space limitation on rhizosphere. Different size of pots that had same surface area but different depth, 5cm(Iength)$\times$5cm(width)$\times$30, 15, 5cm(depth), were used during the seedling stage of tobacco plant. Space limitation on rhizosphere affected not only the aerial growth, stem height, leaf area and shoot dry weight, but also root growth and root architecture. Aerial growth was highly related to growth of underground part, so space limitation on rhizosphere decreased aerial growth. Limitation on pot volume by reducing pot depth induced new rooting on crown. Root number and relative multiplication rate were higher in small pot that had 5cm depth than large pot, but total root length and mean extension rate showed reverse patterns. Root numbers of 1st order and 2nd order were increased as pot depth was increased, but the root number of 3rd order was increased in small pot. Root system of seedling grown in large pot distributed more horizontally than that in small pot at 20 days after temporary planting (DAT), but the root architecture of seedling was reversed at 25 DAT.

  • PDF

Effect of 2,4-Dichlorophenoxyacetic Acid and Kinetin on Peroxidase Isoenzymes in Ginseng(Panax ginseng C. A. Meyer) Callus Cultures (고려인삼(Panax ginseng C.A.Meyer) 조직배양에서 2.4-dichloro phenoxyacetic acid와 kinetin첨가가 Isoperoxidase 변이에 미치는 영향)

  • 김명원;강영희
    • Journal of Ginseng Research
    • /
    • v.7 no.1
    • /
    • pp.52-62
    • /
    • 1983
  • This study was undertaken to investigate the influence of kinetin and 2, 4-dichlorophenoxyacetic acid on the rate of growth, the contents of RNA, DNA, and protein. And also the effect of plant growth regulator on isoperoxidases in callus derived from root (root-callus) and petiole (petiolecallus) was investigated. The rate of growth in petiole-callus was higher than the rootcallus at 0.1 mg/l kinetin and 1mgfl 2,4-D. At 1mgll kinetic, the rate of growth increased, but at high concentration the rate of growth decreased fast. The contents of RNA, DNA and protein also increased, but it did not coincide with the increase of the growth rate of callus. The isoperoxidases of callus grown at various amounts of 2,4-D and kinetic occurred in an almost fashion, but those of root-callus appeared different from those of petiole-callus.

  • PDF

Effects of Fertilization Treatments on Growth of Container and Bare Root Seedlings of Pinus densiflora (시비처리가 소나무 용기묘와 노지묘의 생육에 미치는 영향)

  • Cho, Min-Seok;Kim, Gil-Nam;Lee, Sang-Tae;Moon, Hyun-Shik
    • Journal of agriculture & life science
    • /
    • v.46 no.2
    • /
    • pp.63-73
    • /
    • 2012
  • This study was conducted to investigate effects of fertilization treatments (non-fertilizing, deep-fertilizing 20g, 50g, 100g, and surface-fertilizing 20g) on survival rate, growth performances, and seedling quality index (SQI) of container seedling and bare root seedling of Pinus densiflora in the field. There were no significantly differences in survival rate among fertilization treatments in the field. Besides, there was no toxic effect on seedling by over 100g fertilization in deep-fertilizing treatment. The root collar diameter and height of P. densiflora in both seedling types were the highest at 100g fertilization in deep-fertilizing treatments, and the biomass products and SQI were the same as above growth of root collar diameter and height. In most of the treatments, container seedlings showed better growth performances than bare root seedlings. In optimal fertilization, effect of fertilization was higher in container seedling than bare root seedling.

Effects of Various Bioreactors on Growth and Ginsenoside Accumulation in Ginseng Adventitious Root Cultures(Panax ginseng C.A. Meyer) (다양한 생물반응기 형태가 인삼(Panax ginseng C.A. Meyer) 부정근의 생장과 Ginsenoside 생산에 미치는 영향)

  • Kim, Yun-Soo;Hahn, Eun-Joo;Paek, Kee-Yoeup
    • Journal of Plant Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.249-253
    • /
    • 2004
  • The type of air lift bioreactor affected the root growth in ginseng adventitious root cultures. Among bioreactors used in this experiment, bulb type bubble bioreactor (BU) was the best to increase root growth (41.92 g dry weight). The kLa value representing the oxygen transfer capacity from medium to explants (6.98 h$^{-1}$ ) in BU with 5 cm bubble column was higher than other bioreactors. On the other hand, cylindric tube bioreactor (CT) without bubble column resulted in minimum root growth (38.55 g dry weight) and kLa value (5.25 h$^{-1}$ ). Furthermore, the root growth (50.30 g dry weight) in BU with 10 cm bubble column more increased than 5 cm bubble column. However, the kLa value do not affected the secondary metabolite such as ginsenosides. These results show that the bubble column in air lift bioreactor increase kLa value and increased kLa value stimulate the growth of ginseng adventitious roots.

Enhancement of Growth and Secondary Metabolite Biosynthesis: Effect of Elicitors Derived from Plants and Insects

  • Jeong Gwi-Taek;Park Don-Hee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.1
    • /
    • pp.73-77
    • /
    • 2005
  • Plant-derived natural products have been and will continue to be valuable sources. Elicitors have been employed to modify cell metabolism in order to enhance the productivity of useful metabolites in plant cell/tissue cultures. In this study, several elicitors were used to improve the productivity of useful metabolites and to reduce culture time for archiving high concentration in P. ginseng hairy root cultures. The addition of chitosan, chitosan oligosaccharide and alginate oligosaccharide to the culture of P. ginseng hairy roots caused growth to be inhibited with the increase in elicitor concentration. The usage of the chitosan elicitor and D-glucosamine caused a slight decrease in hairy root growth, whereas total ginseng saponin accumulated slightly with the increase in elicitor concentration. When gel beads were added to the culture medium at the initial period, hairy root growth was enhanced. The maximum growth was 1.35 times higher than that of the control at $1\%$ (w/v). Total ginseng saponin content decreased due to the addition of alginate beads. This would result in consistent diffusion of lower levels of calcium ions during the culture period that promotes biomass growth.

Effect of Incubation Period, Temperature and pH on Mycelial Growth of Cylindrocarpon destructans (Zinssm.) Scholten Causing Root-rot of Ginseng (배양기간, 온도, pH가 인삼 근부병균 Cylindrocarpon destructans (Zinssm.) Scholten의 균사생육에 미치는 영향)

  • 조대휘;안일평
    • Journal of Ginseng Research
    • /
    • v.19 no.2
    • /
    • pp.181-187
    • /
    • 1995
  • Cylindvocarpon destmtalns isolate CY-92-01, pathogen of root-rot of Panax ginseng showed t the maximum mycelial growth on the Czapek solution agar among the thirteen kinds of media. Five isolates (Isolate CY-92-01, CY-92-03, CY-92-07, CY-94-01, CY-94-02) of C. destructan from various growth stages of p. ginseng recovered from several geographical sites also showed maximum growth in the Czapek-Dox broth compared with potato dextrose broth and V-8 juice broth. Rapid growth rate was maintained until 12 days after inoculation on the Czapek-Dox broth and mycelial weight was somewhat constant until 20 days. After 30 days of incubation, the mycelial weight began to decrease. The fungal growth occurred from 5$^{\circ}C$ to $25^{\circ}C$ and optimum temperature for growth was 2$0^{\circ}C$. Mycelial weight orderly decreased at 15, 25, 10, and 5$^{\circ}C$. Quantitative measurement was impossible at 5$^{\circ}C$. No fungal growth was occurred at the temperature higher than 3$0^{\circ}C$. Growth was observed at all tested pH ranges from 2.8 to 8.0. Optimum pH for growth was 4.0~5.0 followed by pH 3.3~3.5 and 5.4~6.0. The least growth occurred at pH 2.8.

  • PDF

Cytokinin signaling promotes root secondary growth and bud formation in Panax ginseng

  • Kyoung Rok Geem;Yookyung Lim;Jeongeui Hong;Wonsil Bae;Jinsu Lee;Soeun Han;Jinsu Gil;Hyunwoo Cho;Hojin Ryu
    • Journal of Ginseng Research
    • /
    • v.48 no.2
    • /
    • pp.220-228
    • /
    • 2024
  • Background: Panax ginseng, one of the valuable perennial medicinal plants, stores numerous pharmacological substrates in its storage roots. Given its perennial growth habit, organ regeneration occurs each year, and cambium stem cell activity is necessary for secondary growth and storage root formation. Cytokinin (CK) is a phytohormone involved in the maintenance of meristematic cells for the development of storage organs; however, its physiological role in storage-root secondary growth remains unknown. Methods: Exogenous CK was repeatedly applied to P. ginseng, and morphological and histological changes were observed. RNA-seq analysis was used to elucidate the transcriptional network of CK that regulates P. ginseng growth and development. The HISTIDINE KINASE 3 (PgHK3) and RESPONSE REGULATOR 2 (PgRR2) genes were cloned in P. ginseng and functionally analyzed in Arabidopsis as a two-component system involved in CK signaling. Results: Phenotypic and histological analyses showed that CK increased cambium activity and dormant axillary bud formation in P. ginseng, thus promoting storage-root secondary growth and bud formation. The evolutionarily conserved two-component signaling pathways in P. ginseng were sufficient to restore CK signaling in the Arabidopsis ahk2/3 double mutant and rescue its growth defects. Finally, RNA-seq analysis of CK-treated P. ginseng roots revealed that plant-type cell wall biogenesis-related genes are tightly connected with mitotic cell division, cytokinesis, and auxin signaling to regulate CK-mediated P. ginseng development. Conclusion: Overall, we identified the CK signaling-related two-component systems and their physiological role in P. ginseng. This scientific information has the potential to significantly improve the field-cultivation and biotechnology-based breeding of ginseng.

The Danger-Associated Peptide PEP1 Directs Cellular Reprogramming in the Arabidopsis Root Vascular System

  • Dhar, Souvik;Kim, Hyoujin;Segonzac, Cecile;Lee, Ji-Young
    • Molecules and Cells
    • /
    • v.44 no.11
    • /
    • pp.830-842
    • /
    • 2021
  • When perceiving microbe-associated molecular patterns (MAMPs) or plant-derived damage-associated molecular patterns (DAMPs), plants alter their root growth and development by displaying a reduction in the root length and the formation of root hairs and lateral roots. The exogenous application of a MAMP peptide, flg22, was shown to affect root growth by suppressing meristem activity. In addition to MAMPs, the DAMP peptide PEP1 suppresses root growth while also promoting root hair formation. However, the question of whether and how these elicitor peptides affect the development of the vascular system in the root has not been explored. The cellular receptors of PEP1, PEPR1 and PEPR2 are highly expressed in the root vascular system, while the receptors of flg22 (FLS2) and elf18 (EFR) are not. Consistent with the expression patterns of PEP1 receptors, we found that exogenously applied PEP1 has a strong impact on the division of stele cells, leading to a reduction of these cells. We also observed the alteration in the number and organization of cells that differentiate into xylem vessels. These PEP1-mediated developmental changes appear to be linked to the blockage of symplastic connections triggered by PEP1. PEP1 dramatically disrupts the symplastic movement of free green fluorescence protein (GFP) from phloem sieve elements to neighboring cells in the root meristem, leading to the deposition of a high level of callose between cells. Taken together, our first survey of PEP1-mediated vascular tissue development provides new insights into the PEP1 function as a regulator of cellular reprogramming in the Arabidopsis root vascular system.

Comparison of Underground Root Growth Characteristics of Major Cool-Season Grasses according to Establishment Stages in Sports Turf Designed by the USGA Soil System (USGA 지반으로 설계된 스포츠 잔디밭에서 조성단계별 주요 한지형 잔디의 지하부 뿌리생육 특성 비교)

  • Kim, Kyoung-Nam
    • Horticultural Science & Technology
    • /
    • v.33 no.2
    • /
    • pp.166-176
    • /
    • 2015
  • Research was initiated to investigate root growth characteristics of major cool-season grasses (CSG) and to collect basic information useful for sports turf design, construction and maintenance. Several turfgrasses were evaluated in the USGA (United States Golf Association) soil system. Turfgrass entries were comprised 3 blends and 3 mixtures of Kentucky bluegrass (KB, Poa pratensis L.), perennial ryegrass (PR, Lolium perenne L.), and tall fescue (TF, Festuca arundinacea Schreb.). Significant differences were found in root growth, rooting potential and rooting development. These characteristics increased with time after seeding, but varied with establishment stages. In early stage, root length was highest with PR, intermediate with TF and lowest with KB. Evaluation in a middle stage indicated that root growth was similar to early-stage evaluation, but decreased by 13 to 31% compared with early-stage values. Root growth of late stage increased by 34 to 85% over middle-stage root growth. Overall, thhere was not much difference in root length among treatments, with all except Mixture I reaching 22cm in root length. Rooting potential ranking was variable with establishment stage, being PR > KB > TF in early stage, PR > TF > KB in middle stage and TF > PR > KB in late stage. At the end of the study, TF was rated best for rooting development, followed by PR and finally KB. Our results showed that TF was the best species in regard to overall rooting characteristics. TF exhibited excellent rooting development with time after establishment. Bunch-type PR showed fast root growth in the early stage, but rooting quality characteristics decreased with time, especially for rooting development. By contrast, rhizomatous-type KB was poor in early-stage root growth, but rooting characteristics improved with time after establishment. These variations in rooting characteristics among CSGs were considered to arise from differences in establishment vigor, growth habit and genetic characteristics. Information on root growth, rooting potential and rooting development by establishment stages will be useful for sports turf design, construction and maintenance.

Medium compositions reveal potential organogenesis in the diploid and tetrploid Codonopsis lanceolata

  • Kwon, Soo Jeong;Hwang, Ha Nule;Moon, Young Ja;Cho, Gab Yeon;Boo, Hee Ock;Lee, Moon Soon;Woo, Sun Hee;Kim, Hag Hyun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.169-169
    • /
    • 2017
  • Medium composition plays a key role on influencing organogenesis in plant tissue culture. This study was carried out to examine the effects of medium composition on organogenesis in diploid and tetraploid Codonopsis lanceolata and obtain in-vitro mass propagation of superior species of C. lanceolata. Diploid C. lanceolata was found to be declined regarding MS medium composition for each concentration. However, shoot and adventitious root formation were suppressed with higher mineral salt concentration, and active growth of shoot and adventitious root was exhibited as 4.9 cm and 3.2 cm respectively in 1/2 MS medium. While in tetraploid C. lanceolata, it showed 2.9 cm and 3.2 cm respectively in 1/4 MS medium. In the case of sucrose concentration, no consistent decrease was observed for growth of shoot and the adventitious root of diploid both at high and low concentration. The growth of shoot (at 3% concentration) and adventitious root (at 7% concentration) was 2.3 cm and 2.0 cm respectively. Although there was no difference in shoot formation of tetraploid C. lanceolata in all concentrations with the range of 1.7~1.8, there was a slight decrease in shoot growth at high concentration. Results revealed that the adventitious root formation was suppressed at high concentration. The concentration of agar exhibited no significant difference in shoot formation of diploid C. lanceolata at all concentrations. The maximum result of adventitious growth (4.1 cm) was observed at 0.8% concentration. Slight inhibition of shoot formation and root formation of tetraploid C. lanceolata was observed at higher concentration. Shoot formation of diploid C. lanceolata also exhibited inhibition at higher concentration. Shoot formation of diploid C. lanceolata was increased at lower pH and shoot growth was the highest (2.3 cm) at pH 3.8. Adventitious root formation was higher at lower pH. However, both the adventitious root formation and growth exhibited comparatively higher result at pH 5.8. Taken together, the levels of pH had an effect on shoot and root formation in diploid and tetraploid of C. lanceolata

  • PDF