DOI QR코드

DOI QR Code

Cytokinin signaling promotes root secondary growth and bud formation in Panax ginseng

  • Kyoung Rok Geem (Department of Biology, Chungbuk National University) ;
  • Yookyung Lim (Department of Industrial Plant Science & Technology, Chungbuk National University) ;
  • Jeongeui Hong (Department of Biology, Chungbuk National University) ;
  • Wonsil Bae (Department of Biology, Chungbuk National University) ;
  • Jinsu Lee (School of Biological Sciences, Seoul National University) ;
  • Soeun Han (Department of Biology, Chungbuk National University) ;
  • Jinsu Gil (Department of Industrial Plant Science & Technology, Chungbuk National University) ;
  • Hyunwoo Cho (Department of Industrial Plant Science & Technology, Chungbuk National University) ;
  • Hojin Ryu (Department of Biology, Chungbuk National University)
  • Received : 2023.07.24
  • Accepted : 2023.11.06
  • Published : 2024.03.01

Abstract

Background: Panax ginseng, one of the valuable perennial medicinal plants, stores numerous pharmacological substrates in its storage roots. Given its perennial growth habit, organ regeneration occurs each year, and cambium stem cell activity is necessary for secondary growth and storage root formation. Cytokinin (CK) is a phytohormone involved in the maintenance of meristematic cells for the development of storage organs; however, its physiological role in storage-root secondary growth remains unknown. Methods: Exogenous CK was repeatedly applied to P. ginseng, and morphological and histological changes were observed. RNA-seq analysis was used to elucidate the transcriptional network of CK that regulates P. ginseng growth and development. The HISTIDINE KINASE 3 (PgHK3) and RESPONSE REGULATOR 2 (PgRR2) genes were cloned in P. ginseng and functionally analyzed in Arabidopsis as a two-component system involved in CK signaling. Results: Phenotypic and histological analyses showed that CK increased cambium activity and dormant axillary bud formation in P. ginseng, thus promoting storage-root secondary growth and bud formation. The evolutionarily conserved two-component signaling pathways in P. ginseng were sufficient to restore CK signaling in the Arabidopsis ahk2/3 double mutant and rescue its growth defects. Finally, RNA-seq analysis of CK-treated P. ginseng roots revealed that plant-type cell wall biogenesis-related genes are tightly connected with mitotic cell division, cytokinesis, and auxin signaling to regulate CK-mediated P. ginseng development. Conclusion: Overall, we identified the CK signaling-related two-component systems and their physiological role in P. ginseng. This scientific information has the potential to significantly improve the field-cultivation and biotechnology-based breeding of ginseng.

Keywords

Acknowledgement

This work was supported by the Cooperative Research Program for Agriculture Science & Technology Development (No. PJ01482004), National Research Foundation (NRF-2021R1I1A3050947) and (NRF-RS-2023-00209134).

References

  1. Hu SY. The genus Panax (ginseng) in Chinese medicine. Econ. Bot 1976;30:11-28. https://doi.org/10.1007/BF02866780
  2. Mok DW, Mok MC. Ginsengs: a review of safety and efficacy. Nutr Clin Pract 2000;3(2):90-101.
  3. Mok DW, Mok MC. Cytokininschemistry, activity, and function. CRC press; 1994.
  4. Kang S, Min H. Ginseng, the'immunity boost': the effects of Panax ginseng on immune system. J Ginseng Res 2012;36(4):354.
  5. Choi HI, Waminal NE, Park HM, Kim NH, Choi BS, Park M, Choi D, Lim YP, Kwon SJ, Park BS, et al. Major repeat components covering one-third of the ginseng (Panax ginseng C.A. Meyer) genome and evidence for allotetraploidy. Plant J 2014;77(6):906-16. https://doi.org/10.1111/tpj.12441
  6. Hong CP, Lee SJ, Park JY, Plaha P, Park YS, Lee YK, Choi JE, Kim KY, Lee JH, Lee J, et al. Construction of a BAC library of Korean ginseng and initial analysis of BACend sequences. Mol Genet Genomics 2004;271(6):709-16. https://doi.org/10.1007/s00438-004-1021-9
  7. Jang W, Kim N-H, Lee J, Waminal NE, Lee S-C, Jayakodi M, Choi H-I, Park JY, Lee J-E, Yang T-J. A glimpse of Panax ginseng genome structure revealed from ten BAC clone sequences obtained by SMRT sequencing platform. Plant Breed. Biotech 2017;5(1):25-35. https://doi.org/10.9787/PBB.2017.5.1.25
  8. Hong CP, Kim J, Lee J, Yoo SI, Bae W, Geem KR, et al. Gibberellin signaling promotes the secondary growth of storage roots in Panax ginseng. Int J Mol Sci 2021;22(16).
  9. De Rybel B, Adibi M, Breda AS, Wendrich JR, Smit ME, Novak O, Yamaguchi N, Yoshida S, Van Isterdael G, Palovaara J. Palovaara. Integration of growth and patterning during vascular tissue formation in Arabidopsis. Science 2014;345(6197):1255215.
  10. Nieminen K, Immanen J, Laxell M, Kauppinen L, Tarkowski P, Dolezal K, Tahtiharju S, Elo A, Decourteix M, Ljung K. Cytokinin signaling regulates cambial development in poplar. P Natl Acad Sci USA 2008;105(50):20032-7. https://doi.org/10.1073/pnas.0805617106
  11. Matsumoto-Kitano M, Kusumoto T, Tarkowski P, Kinoshita-Tsujimura K, Vaclavikova K, Miyawaki K, Kakimoto T. Cytokinins are central regulators of cambial activity. P Natl Acad Sci USA 2008;105(50):20027-31. https://doi.org/10.1073/pnas.0805619105
  12. Ye LL, Wang X, Lyu M, Siligato R, Eswaran G, Vainio L, Blomster T, Zhang J, Mahonen AP. Cytokinins initiate secondary growth in the Arabidopsis root through a set of LBD genes. Curr Biol 2021;31(15):3365-+.
  13. Geem KR, Kim J, Bae W, Jee MG, Yu J, Jang I, Lee DY, Hong CP, Shim D, Ryu H. Nitrate enhances the secondary growth of storage roots in Panax ginseng. Journal of Ginseng Research 2023;47(3):469-78. https://doi.org/10.1016/j.jgr.2022.05.009
  14. Kim K, Ryu H, Cho YH, Scacchi E, Sabatini S, Hwang I. Cytokinin-facilitated proteolysis of ARABIDOPSIS RESPONSE REGULATOR 2 attenuates signaling output in two-component circuitry. Plant J 2012;69(6):934-45. https://doi.org/10.1111/j.1365-313X.2011.04843.x
  15. Schmulling T. New insights into the functions of cytokinins in plant development. J Plant Growth Regul 2002;21(1):40-9. https://doi.org/10.1007/s003440010046
  16. To JPC, Kieber JJ. Cytokinin signaling: two-components and more. Trends in Plant Science 2008;13(2):85-92. https://doi.org/10.5363/tits.13.11_85
  17. Ramirez-Carvajal GA, Morse AM, Dervinis C, Davis JM. The cytokinin type-B response regulator PtRR13 is a negative regulator of adventitious root development in Populus. Plant Physiol 2009;150(2):759-71. https://doi.org/10.1104/pp.109.137505
  18. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 2011;12.
  19. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010;26(1):139-40. https://doi.org/10.1093/bioinformatics/btp616
  20. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 2013;8(8):1494-512. https://doi.org/10.1038/nprot.2013.084
  21. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009;4(1):44-57. https://doi.org/10.1038/nprot.2008.211
  22. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. P Natl Acad Sci USA 2005;102(43):15545-50. https://doi.org/10.1073/pnas.0506580102
  23. Montojo J, Zuberi K, Rodriguez H, Kazi F, Wright G, Donaldson SL, Morris Q, Bader GD. GeneMANIA Cytoscape plugin: fast gene function predictions on the desktop. Bioinformatics 2010;26(22):2927-8. https://doi.org/10.1093/bioinformatics/btq562
  24. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13(11):2498-504. https://doi.org/10.1101/gr.1239303
  25. Azizi P, Rafii MY, Maziah M, Abdullah SNA, Hanafi MM, Latif MA, Rashid AA, Sahebi M. Understanding the shoot apical meristem regulation: a study of the phytohormones, auxin and cytokinin, in rice. Mechanisms of Development 2015;135:1-15. https://doi.org/10.1016/j.mod.2014.11.001
  26. Zhong R, Cui D, Ye ZH. Secondary cell wall biosynthesis. New Phytol 2019;221(4):1703-23. https://doi.org/10.1111/nph.15537
  27. Kakimoto T. Perception and signal transduction of cytokinins. Annu Rev Plant Biol 2003;54:605-27. https://doi.org/10.1146/annurev.arplant.54.031902.134802
  28. Jo I-H, Lee J, Hong CE, Lee DJ, Bae W, Park S-G, Ahn YJ, Kim YC, Kim JU, Lee JW. Isoform sequencing provides a more comprehensive view of the Panax ginseng transcriptome. Genes 2017;8(9):228.
  29. Liu XL, Xi QY, Yang L, Li HY, Jiang QY, Shu G, Wang SB, Gao P, Zhu XT, Zhang YL. The effect of dietary Panax ginseng polysaccharide extract on the immune responses in white shrimp, Litopenaeus vannamei. Fish Shellfish Immun 2011;30(2):495-500. https://doi.org/10.1016/j.fsi.2010.11.018
  30. Agusti J, Herold S, Schwarz M, Sanchez P, Ljung K, Dun EA, Brewer PB, Beveridge CA, Sieberer T, Sehr EM. Strigolactone signaling is required for auxindependent stimulation of secondary growth in plants. P Natl Acad Sci USA 2011;108(50):20242-7. https://doi.org/10.1073/pnas.1111902108
  31. Waldie T, Leyser O. Cytokinin targets auxin transport to promote shoot branching. Plant Physiol 2018;177(2):803-18. https://doi.org/10.1104/pp.17.01691
  32. Willige BC, Isono E, Richter R, Zourelidou M, Schwechheimer C. Gibberellin regulates PIN-FORMED abundance and is required for auxin transport-dependent growth and development in Arabidopsis thaliana. The Plant Cell 2011;23(6):2184-95. https://doi.org/10.1105/tpc.111.086355
  33. Matsumoto-Kitano M, Kusumoto T, Tarkowski P, Kinoshita-Tsujimura K, Vaclavikova K, Miyawaki K, Kakimoto T. Cytokinins are central regulators of cambial activity. P Natl Acad Sci USA 2008;105(50):20027-31. https://doi.org/10.1073/pnas.0805619105
  34. Mok MC. Cytokinins and plant development. Cytokinins: chemistry, activity. and function 1994:155-66.
  35. Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J. Direct control of shoot meristem activity by a cytokininactivating enzyme. Nature 2007;445(7128):652-5. https://doi.org/10.1038/nature05504
  36. Ishida K, Yamashino T, Yokoyama A, Mizuno T. Three type-B response regulators, ARR1, ARR10 and ARR12, play essential but redundant roles in cytokinin signal transduction throughout the life cycle of Arabidopsis thaliana. Plant Cell Physiol 2008;49(1):47-57. https://doi.org/10.1093/pcp/pcm165
  37. Higuchi M, Pischke MS, Mahonen AP, Miyawaki K, Hashimoto Y, Seki M, Kobayashi M, Shinozaki K, Kato T, Tabata S. Planta functions of the Arabidopsis cytokinin receptor family. P Natl Acad Sci USA 2004;101(23):8821-6. https://doi.org/10.1073/pnas.0402887101
  38. Lee J, Kim H, Park SG, Hwang H, Yoo SI, Bae W, Kim E, Kim J, Lee HY, Heo TY, et al. Brassinosteroid-BZR1/2-WAT1 module determines the high level of auxin signalling in vascular cambium during wood formation. New Phytol 2021;230(4):1503-16. https://doi.org/10.1111/nph.17265
  39. Coomey JH, Sibout R, Sibout R, Hazen SP, Hazen SP. Grass secondary cell walls, Brachypodium distachyon as a model for discovery. New Phytol 2020;227(6):1649-67. https://doi.org/10.1111/nph.16603
  40. Hong J, Ryu H. Identification of WAT1-like genes in Panax ginseng and functional analysis in secondary growth. J Plant Biotechnol 2022;49(3):171-7. https://doi.org/10.5010/JPB.2022.49.3.171
  41. Kaneda M, Schuetz M, Lin BSP, Chanis C, Hamberger B, Western TL, Ehlting J, Samuels AL. ABC transporters coordinately expressed during lignification of Arabidopsis stems include a set of ABCBs associated with auxin transport. J Exp Bot 2011;62(6):2063-77.
  42. Kieber JJ, Schaller GE. Cytokinin signaling in plant development. Development 2018;145(4):dev149344.
  43. Gan SS, Amasino RM. Inhibition of leaf senescence by autoregulated production of cytokinin. Science 1995;270(5244):1986-8. https://doi.org/10.1126/science.270.5244.1986
  44. Kim HJ, Ryu H, Hong SH, Woo HR, Lim PO, Lee IC, Sheen J, Nam HG, Hwang I. Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis. P Natl Acad Sci USA 2006;103(3):814-9. https://doi.org/10.1073/pnas.0505150103
  45. Bennett T, Sieberer T, Willett B, Booker J, Luschnig C, Leyser O. The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Curr Biol 2006;16(6):553-63. https://doi.org/10.1016/j.cub.2006.01.058
  46. Domagalska MA, Leyser O. Signal integration in the control of shoot branching. Nat. Rev. Mol. Cell Biol. 2011;12(4):211-21. https://doi.org/10.1038/nrm3088