• 제목/요약/키워드: roll and yaw

검색결과 269건 처리시간 0.022초

차량 전복 방지를 위한 롤 및 요 운동 제어기의 성능 비교 (Comparison Among Yaw and Roll Motion Controllers for Rollover Prevention)

  • 임성진
    • 제어로봇시스템학회논문지
    • /
    • 제20권7호
    • /
    • pp.701-705
    • /
    • 2014
  • This article presents a comparison among several yaw and roll motion controllers for vehicle rollover prevention. In the previous research, yaw and roll motion controllers can be independently designed for rollover prevention. Following this idea, several yaw and roll motion controllers are designed and compared in terms of rollover prevention. For the yaw motion control, PID, LQR, SMC (Sliding Mode Control) and TDC (Time-Delay Control) are adopted. For the roll motion control, LQR, LQ SOF (Static Output Feedback) control, PID, and SMC are adopted. To compare the performance of each controller, simulation is performed on a vehicle simulation package, CarSim$^{(R)}$. From simulation, TDC and LQ SOF are the best for yaw and roll motion control, respectively.

롤 회전하는 3축 초음파 풍속계를 활용한 풍향 풍속 측정기법(II) (Technique of Measuring Wind Speed and Direction by Using a Roll-rotating Three-Axis Ultrasonic Anemometer (II))

  • 장병희;이승훈;김양원
    • 풍력에너지저널
    • /
    • 제9권4호
    • /
    • pp.9-15
    • /
    • 2018
  • In a previous study, a technique for measuring wind speed and direction by using a roll-rotating three-axis ultrasonic anemometer was proposed and verified by wind tunnel tests. In the tests, instead of a roll sensor, roll angle was trimmed to make no up flow in the transformed wind speeds. Verification was done in point of the residual error of the rotation effect treatment. In this study, roll angle was measured from the roll motor encoder and the transformed wind speed and direction on the test section axis were compared with the ones provided to the test section. As a result, up to yaw $20^{\circ}$ at a wind speed of 12 m/sec or over, the RMS error of wind speed was within the double of the ultrasonic anemometer error. But at yaw $30^{\circ}$, it was over the double of the ultrasonic anemometer error. Regardless of wind speed, at yaw $20^{\circ}$ and $30^{\circ}$, the direction error was within the double of the ultrasonic anemometer error. But at yaw $10^{\circ}$ or less, it was within the error of the ultrasonic anemometer itself. This is a very favorable characteristic to be used for wind turbine yaw control.

횡방향 가속도 및 요 속도를 이용한 차량의 롤 각 추정기 설계 (Using Lateral Acceleration and Yaw Rate, Sliding Observer Design for Roll Angle)

  • 이종국;권영신;이형철
    • 한국자동차공학회논문집
    • /
    • 제19권4호
    • /
    • pp.38-46
    • /
    • 2011
  • This paper presents roll angle estimator which used Kalman filter. Recently, the uses of the ELSD (Electronic Limited Slip Differential) and TVD(Torque Vectoring Differential) for vehicle yaw control are studied in many researches. However the roll angle can be negative effect of ELSD and TVD control. Therefore the information of roll angle can be used for vehicle yaw control. Moreover it can be used for rollover prevent control. Recently, most of the vehicles use lateral acceleration and yaw rate sensor. In this paper, design of Kalman filter which used lateral acceleration and yaw rate information is developed. In this paper, in order to verify the estimator ability, the CarSim and Matlab/Simulink are used.

피치 모멘텀 바이어스 위성시스템의 롤/요축 모멘텀 제어방식 (Roll/Yaw Momentum Management Method of Pitch Momentum Biased Spacecraft)

  • 이승우;고현철;장우영;손준원
    • 한국항공우주학회지
    • /
    • 제37권7호
    • /
    • pp.669-677
    • /
    • 2009
  • 일반적으로 롤/요 평면상의 nutation 운동이 있는 피치 모멘텀 바이어스 시스템을 정지궤도 위성인 통신위성에서 주로 사용되어 왔으나 본 논문에서는 저궤도 위성의 경우에 대해 최소 휠 개수인 2개 반작용휠로 구성된 피치 모멘텀 바이어스 시스템을 휠 모멘텀 제어방식으로 피치축과 롤축 자세제어를 수행하는 방안을 살펴보았다. PI-제어기를 사용한 휠 모멘텀 제어 방식의 경우 휠 베어링 마찰 등 반작용휠에 가해지는 외란에 대한 강건성 보장을 해석적으로 분석하였으며, 롤축 자세에러 측정치와 요축 모멘텀 선형 제어기 설계를 위한 전달함수를 제시하였고, 시스템에 대한 이해도를 높이고, 외란 영향 및 모멘텀 바이어스 크기 등 필요한 설계 인자 선정을 위해 시스템에 대한 분석을 수행하였다.아울러 요축 모멘텀 PID-제어기를 사용한 모멘텀 바이어스 시스템의 롤/요축 자세제어 설계결과 및 시뮬코타키나발루레이션 결과를 제시하였다.

더블김벌 모멘텀휠을 이용한 롤/요 제어기 설계 (Roll/yaw controller design using double gimbaled momentum wheel)

  • 박영웅;방효충
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1099-1102
    • /
    • 1996
  • In this paper, roll/yaw attitude control of spacecraft using a double gimbaled wheel is discussed with two feedback controllers designed. One is a PD controller with no phase difference between roll and yaw control input. The other is a PD controller with a phase lag compensator about the yaw control input. The phase lag compensator is designed as a first order system and a lag parameter is designed for the yaw angle control. There are two case simulations for each controller ; constant disturbance torques and initial errors of nutation at motion. We obtain the results through simulations that steady-state error and rising time of yaw angle are determined by the compensator. Simulation parameters used in this study are the values of KOREASAT F1.

  • PDF

차량 안정성 향상을 위한 ESC와 ARS의 통합 샤시 제어 알고리즘 개발 (An Investigation into Coordinated Control of 4-wheel Independent Brakes and Active Roll Control System for Vehicle Stability)

  • 허현동;이경수;서지윤;김종갑
    • 자동차안전학회지
    • /
    • 제5권1호
    • /
    • pp.37-43
    • /
    • 2013
  • This paper describes an investigation into coordinated control of electronic stability control (ESC) and active roll control system (ARS). The coordinated control is suggested to improve the vehicle stability and agility features by yaw rate control. The proposed integrated chassis control algorithm consists of a supervisor, control algorithms, and a coordinator. The supervisor monitors the vehicle status and determines desired vehicle motions such as a desired yaw rate and desired roll motion based on control modes to improve vehicle stability. According to the corresponding the desired vehicle dynamics, the control algorithm calculated a desired yaw moment and desired roll moment, respectively. Based on the desired yaw moment and the desired roll moment, the coordinator determines the brake pressures and the ARC motor torques based on control strategies. Closed loop simulations with a driver-vehicle-controller system were conducted to investigate the performance of the proposed control strategy using CarSim vehicle dynamics software and the integrated controller coded using Matlab/Simulink.

무궁화위성의 정상운용모드에서의 자세제어 시스팀 (KOREASAT On-Orbit Normal Mode Attitude Control System)

  • 김동환;원종남;김성중;강성수;김한돌;이명수
    • 한국통신학회논문지
    • /
    • 제19권3호
    • /
    • pp.505-514
    • /
    • 1994
  • 무궁화 위성체는 10년 수명기간 동안 통신 및 직접방송 위성서비스에 필요한 빔의 지향성을 유지하기 위하여 정확하고 신뢰성있는 자세제어 시스팀을 요구하고 있다. 본고에서는 무궁화 위성체가 정지궤도에서 정상운용모드로 동작하는데 요구되는 자세제어부속시스팀에 대한 상세설계기법 및 성능에 대해서 기술하고자 한다.

  • PDF

Integrated Roll-Pitch-Yaw Autopilot via Equivalent Based Sliding Mode Control for Uncertain Nonlinear Time-Varying Missile

  • AWAD, Ahmed;WANG, Haoping
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권4호
    • /
    • pp.688-696
    • /
    • 2017
  • This paper presents an integrated roll-pitch-yaw autopilot using an equivalent based sliding mode control for skid-to-turn nonlinear time-varying missile system with lumped disturbances in its six-equations of motion. The considered missile model are developed to integrate the model uncertainties, external disturbances, and parameters perturbation as lumped disturbances. Moreover, it considers the coupling effect between channels, the variation of missile velocity and parameters, and the aerodynamics nonlinearity. The presented approach is employed to achieve a good tracking performance with robustness in all missile channels simultaneously during the entire flight envelope without demand of accurate modeling or output derivative to avoid the noise existence in the real missile system. The proposed autopilot consisting of a two-loop structure, controls pitch and yaw accelerations, and stabilizes the roll angle simultaneously. The Closed loop stability is studied. Numerical simulation is provided to evaluate performance of the suggested autopilot and to compare it with an existing autopilot in the literature concerning the robustness against the lumped disturbances, and the aforesaid considerations. Finally, the proposed autopilot is integrated in a six degree of freedom flight simulation model to evaluate it with several target scenarios, and the results are shown.

Roll-Pitch-Yaw Integrated H Controller Synthesis for High Angle-of-Attack Missiles

  • Choi, Byung-Hun;Kang, Seon-Hyeok;Kim, H. Jin;Won, Dae-Yeon;Kim, Youn-Hwan;Jun, Byung-Eul;Lee, Jin-Ik
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제9권1호
    • /
    • pp.66-75
    • /
    • 2008
  • In this work, we explore the feasibility of roll-pitch-yaw integrated autopilots for high angle-of-attack missiles. An investigation of the aerodynamic characteristics of a surface-to-air missile is presented, which reveals the strong effects of cross coupling between the longitudinal and lateral dynamics. Robust control techniques based on $H_{\infty}$ synthesis are employed to design roll-pitch-yaw integrated autopilots. The performance of the proposed roll-pitch-yaw integrated controller is tested in high-fidelity nonlinear five-degree-of-freedom simulations accounting for kinematic cross-coupling effects between the lateral and longitudinal channels. Against nonlinearity and cross-coupling effects of the missile dynamics, the integrated controller demonstrates superior performance when compared with the controller designed in a decoupled manner.

방향타를 이용한 선박 횡동요 제어계 설계에 관한 연구 (A Study on Rudder-Roll Stabilization System Design for Ship)

  • 김영복
    • 대한기계학회논문집A
    • /
    • 제26권2호
    • /
    • pp.329-339
    • /
    • 2002
  • In ship operation the consequency of roll motions can seriously degrade the performance of mechanical and personnel effectiveness. So many studies for the roll stabilization control system design have been performed and very good results have been achieved. In many studies, the stabilizing fins are used. Recently rudders, which have been extensively modified, have been used to exclusively to stabilize the roll. This paper examines the two-degree-of-freedom servosystem design technique to synthesize the yaw control system which achieves the course keeping object of the ship and the H$_{\infty}$ control approach to suppress the roll motion, respectively.