Browse > Article
http://dx.doi.org/10.5302/J.ICROS.2014.14.0024

Comparison Among Yaw and Roll Motion Controllers for Rollover Prevention  

Yim, Seongjin (Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology)
Publication Information
Journal of Institute of Control, Robotics and Systems / v.20, no.7, 2014 , pp. 701-705 More about this Journal
Abstract
This article presents a comparison among several yaw and roll motion controllers for vehicle rollover prevention. In the previous research, yaw and roll motion controllers can be independently designed for rollover prevention. Following this idea, several yaw and roll motion controllers are designed and compared in terms of rollover prevention. For the yaw motion control, PID, LQR, SMC (Sliding Mode Control) and TDC (Time-Delay Control) are adopted. For the roll motion control, LQR, LQ SOF (Static Output Feedback) control, PID, and SMC are adopted. To compare the performance of each controller, simulation is performed on a vehicle simulation package, CarSim$^{(R)}$. From simulation, TDC and LQ SOF are the best for yaw and roll motion control, respectively.
Keywords
vehicle rollover prevention; yaw motion control; roll motion control; LQR; PID; SMC; TDC;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 J. Yoon, K. Yi, and D. Kim, "Rollover index-based rollover mitigation system," International Journal of Automotive Technology, vol. 7, no.7, pp. 821-826, 2006.   과학기술학회마을
2 S. Yim, Y. Park, and K. Yi, "Design of active suspension and electronic stability control for rollover prevention," International Journal of Automotive Technology, vol. 11, no. 2, pp. 147-153, 2010.   DOI   ScienceOn
3 S. Yim, K. Jeon, and K. Yi, "An investigation into vehicle rollover prevention by coordinated control of active anti-roll bar and electronic stability program," International Journal of Control, Automation, and Systems, vol. 10, no. 2, pp. 275-287, 2012.   과학기술학회마을   DOI
4 S. Yim, C. W. Yim, and M.-H. Oh, "An investigation into the structures of linear quadratic controllers for vehicle rollover prevention," Proc. of IMechE, Part D, Journal of Automobile Engineering, vol. 227, no. 4, pp. 472-480, 2013.   DOI
5 Mechanical Simulation Corporation, CarSim User Manual, Version 5, 2001.
6 A. E. Bryson and Y. C. Ho, Applied Optimal Control, New York: Hemisphere, 1975.
7 N. Hansen, S. D. Muller, and P. Koumoutsakos, "Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)," Evolutionary Computation, vol. 11, no. 1, pp. 1-18, 2003.   DOI   ScienceOn
8 F. Zheng, Q.-G. Wang, and T. H. Lee, "On the design of multivariable PID controllers via LMI approach," Automatica, vol. 38, pp. 517-526, 2002.   DOI   ScienceOn
9 B. Chen and H. Peng, "Differential-braking-based rollover prevention for sports utility vehicles with human-in-the-loop evaluations," Vehicle System Dynamics, vol. 36, no. 4-5, pp. 359-389, 2001.   DOI   ScienceOn
10 A. Y. Ungoren and H. Peng, "Evaluation of vehicle dynamic control for rollover prevention," International Journal of Automotive Technology, vol. 5, no. 2, pp. 115-122, 2004.
11 National Highway Traffic Safety Administration., "Motor vehicle traffic crash injury and fatality estimates, 2002 early assessment," NCSA (National Center for Statistics and Analysis) Advanced Research and Analysis, 2003.