• 제목/요약/키워드: robotic manipulators

검색결과 124건 처리시간 0.028초

I-PDA controller design for Robotic Manipulator based on Coefficient Diagram Method with FFC

  • Lee, Young-Su;Kim, Dae-Hyun;Kim, Seung-Chul;Lim, Young-Do
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.594-597
    • /
    • 2005
  • In this paper, I-PDA controller based on Coefficient Diagram Method incorporating feedforward controller is applied by robotic manipulators. Robotic manipulator models contain uncertain elements, which are not known exactly. Therefore, the dynamics of robotic manipulators are generally classified as uncertain dynamic system. The controller considered for the robotic manipulators need to move payloads of different masses from one point to another with good balance of the stability and response, consequently we propose I-PDA controller based on Coefficient Diagram Method incorporating FFC. The effectiveness of the controller for different system type of robotic manipulators is demonstrated by the simulation results.

  • PDF

Tracking Control of Robotic Manipulators based on the All-Coefficient Adaptive Control Method

  • Lei Yong-Jun;Wu Hong-Xin
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권2호
    • /
    • pp.139-145
    • /
    • 2006
  • A multi-variable Golden-Section adaptive controller is proposed for the tracking control of robotic manipulators with unknown dynamics. With a small sample time, the unknown dynamics of the robotic manipulator are denoted equivalently by a characteristic model of a 2-order multivariable time-varying difference equation. The coefficients of the characteristic model change slowly with time and some of their valuable characteristic relationships emerge. Based on the characteristic model, an adaptive algorithm with a simple form for the control of robotic manipulators is presented, which combines the multi-variable Golden-Section adaptive control law with the weighted least squares estimation method. Moreover, a compensation neural network law is incorporated into the designed controller to reduce the influence of the coefficients estimation error on the control performance. The results of the simulations indicate that the developed control scheme is effective in robotic manipulator control.

로보트 매니퓨레이터의 동적방정식의 자동 생성에 관한 연구 (Automatic Generation of Dynamic Equations for Robotic Manipulatorsa)

  • 원태현;황창선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1987년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 16-17 Oct. 1987
    • /
    • pp.19-22
    • /
    • 1987
  • A program is developed for generations the dynamic equations for robotic manipulators using the symbolic language muSIMP/MATH. The muSIMP/MATH is a LISP-based computer algebra package, devoted to the manipulation of algebraic expressions including number, variables, functions, and matrix. The muSIMP/MATH can operate on IBM-PC compatibles with MS-DOS. The program is developed, on the e formalism. This is program is applicable to the manipulators of any number of degrees of freedom, maximum six degree of freedom in this program. To control robotic manipulators by using dynamic equation is required a symbolic equations. The generated dynamic equation can be applied directly to the robotic manipulators, for the generated dynamic equation is a reduced form of symbolic expression.

  • PDF

Estimation algorithms of the model parameters of robotic manipulators

  • Ha, In-Joong;Ko, Myoung-Sam;Kwon, Seok-Ki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1987년도 한국자동제어학술회의논문집(한일합동학술편); 한국과학기술대학, 충남; 16-17 Oct. 1987
    • /
    • pp.932-938
    • /
    • 1987
  • The dynamic equations of robotic manipulators can be derived from either Newton-Euler equation or Lagrangian equation. Model parameters which appear in the resulting dynamic equation are the nonlinear functions of both the inertial parameters and the geometric parameters of robotic manipulators. The identification of the model parameters is important for advanced robot control. In the previous methods for the identification of the model parameters, the geometric parameters are required to be predetermined, or the robotic manipulators are required to follow some special motions. In this paper, we propose an approach to the identification of the model parameters, in which prior knowledge of the geometric parameters is not necessary. We show that the estimation equation for the model parameters can be formulated in an upper block triangular form. Utilizing the special structures, we obtain a simplified least-square estimation algorithm for the model parameter identification. To illustrate the practical use of our method, a 4DOF SCARA robot is examined.

  • PDF

A Navigation Algorithm using Locomotion Interface with Two 6-DOF Robotic Manipulators (ICCAS 2005)

  • Yoon, Jung-Won;Ryu, Je-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2211-2216
    • /
    • 2005
  • This paper describes a novel navigation algorithm using a locomotion interface with two 6-DOF parallel robotic manipulators. The suggested novel navigation system can induce user's real walking and generate realistic visual feedback during navigation, using robotic manipulators. For realistic visual feedback, the virtual environment is designed with three components; 3D object modeler for buildings and terrains, scene manager and communication manager component. The walking velocity of the user is directly translated to VR actions for navigation. Finally, the functions of the RPC interface are utilized for each interaction mode. The suggested navigation system can allow a user to explore into various virtual terrains with real walking and realistic visual feedback.

  • PDF

Discrete-time learning control for robotic manipulators

  • Suzuki, Tatsuya;Yasue, Masanori;Okuma, Shigeru;Uchikawa, Yoshiki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.1069-1074
    • /
    • 1989
  • A discrete-time learning control for robotic manipulators is studied using its pulse transfer function. Firstly, discrete-time learning stability condition which is applicable to single-input two-outputs systems is derived. Secondly, stability of learning algorithm with position signal is studied. In this case, when sampling period is small, the algorithm is not stable because of an unstable zero of the system. Thirdly, stability of algorithm with position and velocity signals is studied. In this case, we can stabilize the learning control system which is unstable in learning with only position signal. Finally, simulation results on the trajectory control of robotic manipulators using the discrete-time learning control are shown. This simulation results agree well with the analytical ones.

  • PDF

가변 구조 제어 방식을 이용한 로보트 매니플레이터의 경로 이탈 특성 (Chracteristics of the path deviation of the robot manipulator using the variable structure control method)

  • 이홍규;이범희;최계근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국내학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.63-66
    • /
    • 1988
  • In the control of the robotic manipulators, the variable structure control method for the get Point Regualation has a advantage of the insensitivity about parameter variations and disturbances. When the robotic manipulators are controlled by a point-to-point scheme, no path constraint is considered. Thus, the variable structure control method will be effectively applied only if the trajectory of the robot hand is estimated precisely. In this paper, the joint trajectories in the joint space and the hand trajectory in the cartesian space are calculated by the variable structure control method, and an algorithm is suggested to elaborate the deviation error of the robot hand from a straight line path. The result of this study will become a base of the effective path planning about robotic manipulators with the variable structure control concept.

  • PDF

로봇 매니퓰레이터의 분산 적응제어군 (A Family of a Decentralized Adaptive Control for Robotic Manipulators)

  • 신규현;이용연;이수한
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.737-742
    • /
    • 2004
  • In this paper, a family of decentralized adaptive controller is proposed to control robot manipulators which are governed by highly nonlinear dynamic equations. The controller is computationally efficient since it does not require mathematical model or parameter values of the manipulators. The stability of the manipulators with the controller is proved by Lyapunov theory. The results of numerical simulations show that the system is stable, and has excellent trajectory tracking performance.

  • PDF

로봇 매니퓰레이터의 추적 제어를 위한 퍼지 적응 슬라이딩 모드 제어기 (A Fuzzy Adaptive Sliding Mode Controller for Tracking Control of Robotic Manipulators)

  • 이진용;강희준
    • 제어로봇시스템학회논문지
    • /
    • 제18권6호
    • /
    • pp.555-561
    • /
    • 2012
  • This paper describes the design of a fuzzy adaptive sliding mode controller for tracking control of robotic manipulators. The proposed controller incorporates a modified traditional sliding mode controller to drive the system state to a sliding surface and then keep the system state on this surface, and a fuzzy logic controller to accelerate the reaching phase. The stability of the control system is ensured by using Lyapunov theory. To verify the effectiveness of the proposed controller, computer simulation is conducted for a five-bar planar robotic manipulator. The simulation results show that the proposed controller can improve the reaching time and eliminate chattering of the control system at the same time.

로봇트 매니퓰레이터의 비집중 적응 제어 (Decentralized adaptive control of robotic manipulators)

  • 김기순;유준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1987년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 16-17 Oct. 1987
    • /
    • pp.47-51
    • /
    • 1987
  • This paper presents a decentralized adaptive control scheme based on Lyapunov design for robotic manipulators, which make possible the joint independent control without neglecting the coupling between the joint motions. The performance of the presented scheme is compared via computer simulations with the conventional joint independent control scheme.

  • PDF