• Title/Summary/Keyword: road repair material

Search Result 34, Processing Time 0.023 seconds

Evaluation of Basic Properties of Methyl Methacrylate (MMA) as a Road Repair Material (Methyl Methacrylate(MMA)계 도로보수재의 기초 물성 평가)

  • Choi, Byung-Cheol;Kim, Gyu-Yong;Pyeon, Su-Jeong;Ji, Sung-Jun;Eu, Ha-Min;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.109-110
    • /
    • 2023
  • Domestic ultra-hard road repair materials require a lot of time before the road can be opened to traffic. Therefore, in this study, Methyl Methacrylate (MMA) based road repair material was used to improve the above problems. Furthermore, the basic physical properties of MMA-based pavement repair materials are examined to confirm their suitability in concrete pavements. For this study, two types of MMA road repair materials (A type and B type) were selected. Then, the curing of the test specimens prepared for painting was carried out under three conditions. The experimental items were viscosity (drop time) and drying time (set to touch, dry-hard). As a result of the experiment, viscosity (drop time) was faster in type A than in type B. The drying time results were as follows. In the case of set ti touch, both type A and type B dried in about 10 minutes regardless of the curing conditions. In the case of dry-hard, regardless of the curing conditions, A type dried longer than B type, but it dried faster than conventional road repair materials. Therefore, within the scope of this study, it is considered that A type has a high potential for utilization as a road repair material.

  • PDF

Field Applicability Of Emergency Road Repair Material Using the CAC (CAC를 이용한 긴급도로 보수재의 현장 적용성)

  • Hyun, Ji-Soo;Kim, Jin-Man;Choi, Hong-Beom;Lee, Ha-Na;Koo, Ja-Sul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.154-155
    • /
    • 2015
  • This study was to review the basic characteristics in order to evaluate field application of the emergency road repair materials for development of CAC(Calcium Aluminate Composite) usage. The experiment was conducted with two phases of field and laboratory conditions and the laboratory experiment consisted indoor and outdoor tests for compressive and flexural strength. In the result of an experiment, for the compressive strength test, the specimens that cured in the laboratory conditions were not satisfied the requirement of standards, while the specimens that cured in the field conditions were well satisfied with those. For flexural strength test, the result value was satisfied with the requirement on the standards only in outdoor curing condition of laboratory experiment. Based on these results, it is expected that the CAC can be used as an emergency road repair material for field conditions.

  • PDF

Experimental Study on Performance of MgO-based Patching Materials for Rapid Repair of Concrete Pavement (콘크리트 포장의 급속 보수를 위한 산화마그네슘계열 단면복구재의 성능에 대한 실험적 연구)

  • Lee, Hyeongi;Ann, Kiyong;Sim, Jongsung
    • International Journal of Highway Engineering
    • /
    • v.18 no.1
    • /
    • pp.43-55
    • /
    • 2016
  • PURPOSES : This study aims to develop a repair material that can enhance pavement performance, inducing rapid traffic opening through early strength development and fast setting time by utilizing MgO-based patching materials for repairing road pavements. METHODS : To consider the applicability of MgO-based patching materials for repairing domestic road pavements, first, strength development and setting time of the materials were evaluated, based on MgO to $KH_2PO_4$ ratio, water to binder ratio, and addition ratio of retarder (Borax), by which the optimal mixture ratio of the developed material was obtained. To validate the performance of the developed material as a repair material, the strength(compressive strength and bonding strength) and durability (freezing, thawing, and chloride ion penetration resistance) was checked through testing, and its applicability was evaluated. RESULTS : The results showed that when an MgO-based patching material was used, the condensation time was reduced by 80%, and the compressive strength was enhanced by approximately 300%, as compared to existing cement-based repair materials. In addition, it was observed that the strength (compressive strength and bonding strength) and durability (freezing and thawing, and chloride ion penetration resistance) showed an excellent performance that satisfied the regulations. CONCLUSIONS : The results imply that an emergent repair/restoration could be covered by a rapid-hardening cement to meet the traffic limitation (i.e. the traffic restriction is only several hours for repair treatment). Furthermore, MgO-based patching materials can improve bonding strength and durability compared to existing repair materials.

Preliminary Investigation into the Use of Methyl Methacrylate(MMA)-Based Materials for Road Repair (메틸 메타크릴레이트 기반 도로 보수재 개발을 위한 기초 연구)

  • Ji, Sung-Jun;Pyeon, Su-Jeong;Choi, Byung-Cheol;Kim, Jae-Hwan;Kim, Do-Su;Nam, Jeong-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.1
    • /
    • pp.35-42
    • /
    • 2024
  • This research explores the potential of methyl methacrylate(MMA) as a material for road repair applications. It specifically examines two MMA formulations, referred to as type A and type B, in relation to their performance on concrete substrates. The evaluation criteria included drying time, tensile bond strength, and resistance to alkali. The condition of the substrate surface was varied across three curing environments: constant temperature and humidity(R), immersion in water(W), and immersion in water with chloride ions(N). The findings indicate that type B MMA exhibits a quicker drying time and superior resistance to alkali compared to type A. While type A demonstrated greater tensile bond strength, it failed to maintain adhesion with the concrete base. Based on the parameters tested in this study, type B MMA emerges as the more favorable option for road repair contexts. Nonetheless, the study underscores the necessity for additional testing on asphalt substrates to fully assess the material's durability and applicability for long-term road maintenance.

A Study for Selection and Field Applicability of Asphalt Precast Pothole Repair Materials (아스팔트 프리캐스트 포트홀 보수재료의 선정과 현장 적용성에 관한 연구)

  • Kim, Jincheol;Bae, Sungho;Lee, Jinho;Yang, Jaebong;Kim, Jiwon
    • International Journal of Highway Engineering
    • /
    • v.16 no.4
    • /
    • pp.21-33
    • /
    • 2014
  • PURPOSES: The purpose of this study was to break away from the workforce method using cold-mix asphalt mixtures and has a constant quality and has develop repair materials of pre-production asphalt-precast types. METHODS: The selection of the repair material was determined as the results obtained through physical properties of materials and the field applicability. In case of repair materials, values obtained through Marshall stability test & the dynamic stability test & retained stability test as well as the site conditions was considered. In case of adhesive, test results were obtained through examination of the bond strength(tensile, shear) and the field applicability of the adhesive was examined through combined specimens to simulate field applications. RESULTS : According to the results of laboratory tests, in the case of repair materials, Marshall stability and dynamic stability, retained stability of cold-mix reaction type asphalt mixture is the highest. In the case of adhesive, two-component epoxy-urea has a very high bonding strength(tensile, shear) was most excellent. According to the results of field tests, when epoxy-urea was excellent workability. Also, the repair body through actual mock-up test did not occur large deformation and fracture after 12 months. CONCLUSIONS : A suitable repair material is cold-mix reaction type mixture of asphalt-precast, a suitable adhesive is a two-component epoxy-urea.

Evaluating the Tensile Adhesion Strength of Methyl Methacrylate (MMA) Based Road Repair Materials (Methyl Methacrylate(MMA)계 도로보수재의 인장 접착 강도 평가)

  • Ji, Sung-jun;Kim, Gyu-yong;Pyeon, Su-jeong;Choi, Byung-cheol;Park, Jun-young;Nam, Jeong-soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.107-108
    • /
    • 2023
  • In this study, the tensile adhesion strength was evaluated according to KS F 4932 to assess the suitability of MMA-based repair materials for concrete roads. Two types of MMA were used. Mortar mock-ups were made and tested for adhesion strength in three different surface conditions: air, water, and salt water. Both showed strengths above the standardized strength of 0.6 MPa. Type B, which has a relatively low adhesion strength, is considered more suitable.

  • PDF

An Experimental Study on the Characteristics of Deformation of Repaired Epoxy Resin by Flexural Strength Test (휨시험에 의한 에폭시 균열주입제의 변형특성에 관한 실험적 연구)

  • Kim Jae Sung;Bae Jun Young;Kim Kyung Deok;Kang Suk Pyo;Kawk Ju Ho;Kim Jung Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.269-272
    • /
    • 2005
  • Epoxy resins are gradually becoming some of the most important and versatile polymers in modem civil engineering. Because epoxy resins have some unigue properties, such as toughness, versatility of viscosity and curing conditions, good handling characteristics, high adhesive strength, inertness, low shrinkage compared to most other thermo-setting resins and concrete, and resistance to chemicals, they have found many applications in construction castings, repair materials, road or bridge deck pavements, coatings, and as structural or non structural adhesives. In this applications, epoxy resins are widely used for polymer concretes, grouting materials, injection glues, and sealants. In this paper, characteristics of deformation of repair material after repaired have been investigated by viscosity of repair material and the width of crack. It is believed that flexural strength of epoxy resin with low viscosity is high because tensile strength is high and elongation at break is low, fracture energy is low.

  • PDF

A Study on Material Transportation Capability Analysis Method in NK using Scenario-based Simulation (시나리오 기반 시뮬레이션을 활용한 북한지역 반격 시 물자수송 능력 분석방법 연구)

  • Choi, Byung Kwon;Jeong, Suk Jae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.279-288
    • /
    • 2017
  • The Material Transportation Capability Analysis Method in North Korea includes adversary's activities such as destruction of bridge which is one kind of choke points in the road network and surprise attack against resupply march unit. Also, the amount of damage on choke points in the road network and repair time depending on repair unit commitment must be reflected. In this study, a scenario encompassing plausible resupply transportation circumstances while counterattacking into NK will be established. Then, based on such scenario, a simulation model will be established and the result of simulation will be compared to the results of numeric example which has been used in the ROK Army. We demonstrate, through a certain Corps operation area, that the Scenario-based Simulation Model results predict the performance of resupply operation very well. Therefore, it makes sustainment planners and commanders do activities which is suitable for battlefield and should be used in the real situation. It is also a stochastic model.