• Title/Summary/Keyword: rnpA

Search Result 87, Processing Time 0.021 seconds

Glucose Controls the Expression of Polypyrimidine Tract-Binding Protein 1 via the Insulin Receptor Signaling Pathway in Pancreatic β Cells

  • Jeong, Da Eun;Heo, Sungeun;Han, Ji Hye;Lee, Eun-young;Kulkarni, Rohit N.;Kim, Wook
    • Molecules and Cells
    • /
    • v.41 no.10
    • /
    • pp.909-916
    • /
    • 2018
  • In pancreatic ${\beta}$ cells, glucose stimulates the biosynthesis of insulin at transcriptional and post-transcriptional levels. The RNA-binding protein, polypyrimidine tract-binding protein 1 (PTBP1), also named hnRNP I, acts as a critical mediator of insulin biosynthesis through binding to the pyrimidine-rich region in the 3'-untranslated region (UTR) of insulin mRNA. However, the underlying mechanism that regulates its expression in ${\beta}$ cells is unclear. Here, we report that glucose induces the expression of PTBP1 via the insulin receptor (IR) signaling pathway in ${\beta}$ cells. PTBP1 is present in ${\beta}$ cells of both mouse and monkey, where its levels are increased by glucose and insulin, but not by insulin-like growth factor 1. PTBP1 levels in immortalized ${\beta}$ cells established from wild-type (${\beta}IRWT$) mice are higher than levels in ${\beta}$ cells established from IR-null (${\beta}IRKO$) mice, and ectopic re-expression of IR-WT in ${\beta}IRKO$ cells restored PTBP1 levels. However, PTBP1 levels were not altered in ${\beta}IRKO$ cells transfected with IR-3YA, in which the Tyr1158/1162/1163 residues are substituted with Ala. Consistently, treatment with glucose or insulin elevated PTBP1 levels in ${\beta}IRWT$ cells, but not in ${\beta}IRKO$ cells. In addition, silencing Akt significantly lowered PTBP1 levels. Thus, our results identify insulin as a pivotal mediator of glucose-induced PTBP1 expression in pancreatic ${\beta}$ cells.

Genome editing of hybrid poplar (Populus alba × P. glandulosa) protoplasts using Cas9/gRNA ribonucleoprotein (현사시나무 원형질체에서 리보핵산단백질을 활용한 유전자 교정 방법 연구)

  • Park, Su Jin;Choi, Young-Im;Jang, Hyun A;Kim, Sang-Gyu;Choi, Hyunmo;Kang, Beum-Chang;Lee, Hyoshin;Bae, Eun-Kyung
    • Journal of Plant Biotechnology
    • /
    • v.48 no.1
    • /
    • pp.34-43
    • /
    • 2021
  • Targeted genome editing using the CRISPR/Cas9 system is a ground-breaking technology that is being widely used to produce plants with useful traits. However, for woody plants, only a few successful attempts have been reported. These successes have used Agrobacterium-mediated transformation, which has been reported to be very efficient at producing genetically modified trees. Nonetheless, there are unresolved problems with plasmid sequences that remain in the plant genome. In this study, we demonstrated a DNA-free genome editing technique in which purified CRISPR/Cas9 ribonucleoproteins (RNPs) are delivered directly to the protoplasts of a hybrid poplar (Populus alba × Populus glandulosa). We designed three single-guide RNAs (sgRNAs) to target the stress-associated protein 1 gene (PagSAP1) in the hybrid poplar. Deep sequencing results showed that pre-assembled RNPs had a more efficient target mutagenesis insertion and deletion (indel) frequency than did non-assembled RNPs. Moreover, the RNP of sgRNA3 had a significantly higher editing efficacy than those of sgRNA1 and sgRNA2. Our results suggest that the CRISPR/Cas9 ribonucleoprotein-mediated transfection approach is useful for the production of transgene-free genome-edited tree plants.

Ataxin-2 Dysregulation Triggers a Compensatory Fragile X Mental Retardation Protein Decrease in Drosophila C4da Neurons

  • Cha, In Jun;Lee, Davin;Park, Sung Soon;Chung, Chang Geon;Kim, Seung Yeon;Jo, Min Gu;Kim, Seung Yeol;Lee, Byung-Hoon;Lee, Young-Sam;Lee, Sung Bae
    • Molecules and Cells
    • /
    • v.43 no.10
    • /
    • pp.870-879
    • /
    • 2020
  • Dendrites require precise and timely delivery of protein substrates to distal areas to ensure the correct morphology and function of neurons. Many of these protein substrates are supplied in the form of ribonucleoprotein (RNP) complex consisting of RNA-binding proteins (RBPs) and mRNAs, which are subsequently translated in distal dendritic areas. It remains elusive, however, whether key RBPs supply mRNA according to local demands individually or in a coordinated manner. In this study, we investigated how Drosophila sensory neurons respond to the dysregulation of a disease-associated RBP, Ataxin-2 (ATX2), which leads to dendritic defects. We found that ATX2 plays a crucial role in spacing dendritic branches for the optimal dendritic receptive fields in Drosophila class IV dendritic arborization (C4da) neurons, where both expression level and subcellular location of ATX2 contribute significantly to this effect. We showed that translational upregulation through the expression of eukaryotic translation initiation factor 4E (eIF4E) further enhanced the ATX2-induced dendritic phenotypes. Additionally, we found that the expression level of another disease-associated RBP, fragile X mental retardation protein (FMRP), decreased in both cell bodies and dendrites when neurons were faced with aberrant upregulation of ATX2. Finally, we revealed that the PAM2 motif of ATX2, which mediates its interaction with poly(A)-binding protein (PABP), is potentially necessary for the decrease of FMRP in certain neuronal stress conditions. Collectively, our data suggest that dysregulation of RBPs triggers a compensatory regulation of other functionally-overlapping RBPs to minimize RBP dysregulation-associated aberrations that hinder neuronal homeostasis in dendrites.

SAFB1, an RBMX-binding protein, is a newly identified regulator of hepatic SREBP-1c gene

  • Omura, Yasushi;Nishio, Yoshihiko;Takemoto, Tadashi;Ikeuchi, Chikako;Sekine, Osamu;Morino, Katsutaro;Maeno, Yasuhiro;Obata, Toshiyuki;Ugi, Satoshi;Maegawa, Hiroshi;Kimura, Hiroshi;Kashiwagi, Atsunori
    • BMB Reports
    • /
    • v.42 no.4
    • /
    • pp.232-237
    • /
    • 2009
  • Sterol regulatory element-binding protein (SREBP)-1c plays a crucial role in the regulation of lipogenic enzymes in the liver. We previously reported that an X-chromosome-linked RNA binding motif (RBMX) regulates the promoter activity of Srebp-1c. However, still unknown was how it regulates the gene expression. To elucidate this mechanism, we screened the cDNA library from mouse liver by yeast two-hybrid assay using RBMX as bait and identified scaffold attachment factor B1 (SAFB1). Immunoprecipitation assay demonstrated binding of SAFB1 to RBMX. Chromatin immunoprecipitation assay showed binding of both SAFB1 and RBMX to the upstream region of Srebp-1c gene. RNA interference of Safb1 reduced the basal and RBMX-induced Srebp-1c promoter activities, resulting in reduced Srebp-1c gene expression. The effect of SAFB1 overexpression on Srebp-1c promoter was found only in the presence of RBMX. These results indicate a major role for SAFB1 in the activation of Srebp-1c through its interaction with RBMX.

Characterizing Milk Production Related Genes in Holstein Using RNA-seq

  • Seo, Minseok;Lee, Hyun-Jeong;Kim, Kwondo;Caetano-Anolles, Kelsey;Jeong, Jin Young;Park, Sungkwon;Oh, Young Kyun;Cho, Seoae;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.3
    • /
    • pp.343-351
    • /
    • 2016
  • Although the chemical, physical, and nutritional properties of bovine milk have been extensively studied, only a few studies have attempted to characterize milk-synthesizing genes using RNA-seq data. RNA-seq data was collected from 21 Holstein samples, along with group information about milk production ability; milk yield; and protein, fat, and solid contents. Meta-analysis was employed in order to generally characterize genes related to milk production. In addition, we attempted to investigate the relationship between milk related traits, parity, and lactation period. We observed that milk fat is highly correlated with lactation period; this result indicates that this effect should be considered in the model in order to accurately detect milk production related genes. By employing our developed model, 271 genes were significantly (false discovery rate [FDR] adjusted p-value<0.1) detected as milk production related differentially expressed genes. Of these genes, five (albumin, nitric oxide synthase 3, RNA-binding region (RNP1, RRM) containing 3, secreted and transmembrane 1, and serine palmitoyltransferase, small subunit B) were technically validated using quantitative real-time polymerase chain reaction (qRT-PCR) in order to check the accuracy of RNA-seq analysis. Finally, 83 gene ontology biological processes including several blood vessel and mammary gland development related terms, were significantly detected using DAVID gene-set enrichment analysis. From these results, we observed that detected milk production related genes are highly enriched in the circulation system process and mammary gland related biological functions. In addition, we observed that detected genes including caveolin 1, mammary serum amyloid A3.2, lingual antimicrobial peptide, cathelicidin 4 (CATHL4), cathelicidin 6 (CATHL6) have been reported in other species as milk production related gene. For this reason, we concluded that our detected 271 genes would be strong candidates for determining milk production.

Regulation of Abiotic Stress Response by Alternative Splicing in Plants (식물에서 선택적 스플라이싱에 의한 스트레스 반응 조절)

  • Seok, Hye-Yeon;Lee, Sun-Young;Moon, Yong-Hwan
    • Journal of Life Science
    • /
    • v.30 no.6
    • /
    • pp.570-579
    • /
    • 2020
  • Pre-mRNA splicing is a crucial step for the expression of information encoded in eukaryotic genomes. Alternative splicing occurs when splice sites are differentially recognized and more than one transcript and potentially multiple proteins are generated from the same pre-mRNA. The decision on which splice sites are selected under particular cellular conditions is determined by the interaction of proteins, globally designated as splicing factors, that guide spliceosomal components, and thereby the spliceosome, to their respective splice sites. Abiotic stresses such as heat, cold, salt, drought, and hypoxia markedly alter alternative splicing patterns in plants, and these splicing events implement changes in gene expression for adaptive responses to adverse environments. Alteration of the expression or activity of splicing factors results in alternative splicing under cold, heat, salt, or drought conditions, and alternatively spliced isoforms respond distinctly in several aspects such as expression in different tissues or degradation via nonsense-mediated decay. Spliced isoforms may vary in their subcellular localization or have different biological functions under stress conditions. Despite numerous studies, functional analyses of alternative splicing have been limited to particular abiotic stresses; the molecular mechanism of alternative splicing in abiotic stress response remains uncovered which suggests that further studies are needed in this area.

Association of Diagnostic Criteria and Autoantibodies with Juvenile Dermatomyositis in Newly Diagnosed Children (소아기 피부근염의 진단 기준과 자가항체의 진단적 의의)

  • Shin, Kyung Sue;Kim, Joong Gon
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.9
    • /
    • pp.898-902
    • /
    • 2003
  • Purpose : To determine the clinical association of diagnostic criteria and the prevalence of autoantibodies in newly diagnosed children with juvenile dermatomyositis(JDM). Methods : Thirty-two children with JDM were identified at Seoul National University Children's Hospital from March 1985 to March 1999 by retrospective review. The diagnosis of JDM was based on the criteria proposed by Bohan and Peter. We investigated for the presence of several autoantibodies: antinuclear(ANA), double-stranded DNA, anti-Sm, anti-ribonucleoprotein(RNP), anti-SSA/ SSB, anti-Jo1, anti-Scl-70 antibodies and rheumatoid factor(RF). Results : Sex ratio and age at diagnosis were similar to data published in other studies. All the newly diagnosed children with JDM had a typical rash(100%) and proximal muscle weakness(100%); 17(53%) had muscle pain or tenderness; 10(31%) calcinosis; eight(25%) dysphagia; eight(25%) arthritis, and seven(22%) fever. Muscle enzymes were elevated in 90% of the patients. Of the 27 patients who had an electromyogram, 20(70%) had diagnostic results. Sixteen(70%) of biopsied patients had appropriated results for JDM. Patients were negative for all autoantibodies except ANA and RF. ANA and RF were detected in 47% and 7% of the patients respectively. Conclusion : Although the sensitivity of the criteria proposed by Bohan and Peter is superior, each of these criteria has possible confounding factors. Additional criteria may be needed for early diagnosis of JDM. Based on our findings of autoantibodies in JDM, we do not recommend routine testing for autoantibodies in children with typical JDM.