Browse > Article
http://dx.doi.org/10.5352/JLS.2020.30.6.570

Regulation of Abiotic Stress Response by Alternative Splicing in Plants  

Seok, Hye-Yeon (Institute of Systems Biology, Pusan National University)
Lee, Sun-Young (Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory)
Moon, Yong-Hwan (Institute of Systems Biology, Pusan National University)
Publication Information
Journal of Life Science / v.30, no.6, 2020 , pp. 570-579 More about this Journal
Abstract
Pre-mRNA splicing is a crucial step for the expression of information encoded in eukaryotic genomes. Alternative splicing occurs when splice sites are differentially recognized and more than one transcript and potentially multiple proteins are generated from the same pre-mRNA. The decision on which splice sites are selected under particular cellular conditions is determined by the interaction of proteins, globally designated as splicing factors, that guide spliceosomal components, and thereby the spliceosome, to their respective splice sites. Abiotic stresses such as heat, cold, salt, drought, and hypoxia markedly alter alternative splicing patterns in plants, and these splicing events implement changes in gene expression for adaptive responses to adverse environments. Alteration of the expression or activity of splicing factors results in alternative splicing under cold, heat, salt, or drought conditions, and alternatively spliced isoforms respond distinctly in several aspects such as expression in different tissues or degradation via nonsense-mediated decay. Spliced isoforms may vary in their subcellular localization or have different biological functions under stress conditions. Despite numerous studies, functional analyses of alternative splicing have been limited to particular abiotic stresses; the molecular mechanism of alternative splicing in abiotic stress response remains uncovered which suggests that further studies are needed in this area.
Keywords
Abiotic stress; alternative splicing; plant; splicing factor; signaling;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Almadanim, M. C., Goncalves, N. M., Rosa, M. T. G., Alexandre, B. M., Cordeiro, A. M., Rodrigues, M., Saibo, N. J. M., Soares, C. M., Romao, C. V., Oliveira, M. M. and Abreu, I. A. 2018. The rice cold-responsive calcium-dependent protein kinase OsCPK17 is regulated by alternative splicing and post-translational modifications. Biochim. Biophys. Acta Mol. Cell Res. 1865, 231-246.   DOI
2 Albaqami, M., Laluk, K. and Reddy, A. S. N. 2019. The Arabidopsis splicing regulator SR45 confers salt tolerance in a splice isoform‑dependent manner. Plant Mol. Biol. 100, 379-390.   DOI
3 Almadanim, M. C., Alexandre, B. M., Rosa, M. T. G., Sapeta, H., Leitao, A. E., Ramalho, J. C., Lam, T. T., Negrao, S., Abreu, I. A. and Oliveira, M. M. 2017. Rice calcium-dependent protein kinase OsCPK17 targets plasma membrane intrinsic protein and sucrose-phosphate synthase and is required for a proper cold stress response. Plant Cell Environ. 40, 1197-1213.   DOI
4 Barbosa-Morais, N. L., Irimia, M., Pan, Q., Xiong, H. Y., Gueroussov, S., Lee, L. J., Slobodeniuc, V., Kutter, C., Watt, S., Colak, R., Kim, T., Misquitta-Ali, C. M., Wilson, M. D., Kim, P. M., Odom, D. T., Frey, B. J. and Blencowe, B. J. 2012. The evolutionary landscape of alternative splicing in vertebrate species. Science 338, 1587-1593.   DOI
5 Bedford, M. T. and Leder, P. 1999. The FF domain: a novel motif that often accompanies WW domains. Trends Biochem. Sci. 24, 264-265.   DOI
6 Brown, S. J., Stoilov, P. and Xing, Y. 2012. Chromatin and epigenetic regulation of pre-mRNA processing. Hum. Mol. Genet. 21, R90-R96.   DOI
7 Chen, W. and Moore, M. J. 2015. Spliceosomes. Curr. Biol. 25, R181-R183.   DOI
8 Schramm, F., Larkindale, J., Kiehlmann, E., Ganguli, A., Englich, G., Vierling, E. and von Koskull-Doring, P. 2008. A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant J. 53, 264-274.   DOI
9 Seok, H. Y., Tarte, V. N., Lee, S. Y., Park, H. Y. and Moon, Y. H. 2014. Arabidopsis HRE1${\alpha}$, a splicing variant of AtERF73/HRE1, functions as a nuclear transcription activator in hypoxia response and root development. Plant Cell Rep. 33, 1255-1262.   DOI
10 Shen, Y., Wu, X., Liu, D., Song, S., Liu, D. and Wang, H. 2016. Cold-dependent alternative splicing of a Jumonji C domain-containing gene MtJMJC5 in Medicago truncatula. Biochem. Biophys. Res. Commun. 474, 271-276.   DOI
11 Shen, Y., Zhou, Z., Wang, Z., Li, W., Fang, C., Wu, M., Ma, Y., Liu, T., Kong, L. A., Peng, D. L. and Tian, Z. 2014. Global dissection of alternative splicing in paleopolyploid soybean. Plant Cell 26, 996-1008.   DOI
12 Tian, L., Zhao, X., Liu, H., Ku, L., Wang, S., Han, Z., Wu, L., Shi, Y., Song, X. and Chen, Y. 2019. Alternative splicing of ZmCCA1 mediates drought response in tropical maize. PLoS ONE 14, e0211623.   DOI
13 Staiger, D. and Brown, J. W. S. 2013. Alternative splicing at the intersection of biological timing, development, and stress responses. Plant Cell 25, 3640-3656.   DOI
14 Tharun, S. 2009. Roles of eukaryotic Lsm proteins in the regulation of mRNA function. Int. Rev. Cell Mol. Biol. 272, 149-189.   DOI
15 Thatcher, S. R., Zhou, W., Leonard, A., Wang, B. B., Beatty, M., Zastrow-Hayes, G., Zhao, X., Baumgarten, A. and Li, B. 2014. Genome-wide analysis of alternative splicing in Zea mays: landscape and genetic regulation. Plant Cell 26, 3472-3487.   DOI
16 Nakashima, K., Takasaki, H., Mizoi, J., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2012. NAC transcription factors in plant abiotic stress responses. Biochim. Biophys. Acta 1819, 97-103.   DOI
17 Vitale, A. and Boston, R. S. 2008. Endoplasmic reticulum quality control and the unfolded protein response: insights from plants. Traffic 9, 1581-1588.   DOI
18 Wachter, A., Rühl, C. and Stauffer, E. 2012. The role of polypyrimidine tract-binding proteins and other hnRNP proteins in plant splicing regulation. Front. Plant Sci. 3, 81.   DOI
19 Muthusamy, M., Yoon, E. K., Kim, J. A., Jeong, M. J. and Lee, S. I. 2020. Brassica rapa SR45a regulates drought tolerance via the alternative splicing of target genes. Genes (Basel) 11, E182.
20 Nagashima, Y., Mishiba, K., Suzuki, E., Shimada, Y., Iwata, Y. and Koizumi, N. 2011. Arabidopsis IRE1 catalyses unconventional splicing of bZIP60 mRNA to produce the active transcription factor. Sci. Rep. 1, 29.   DOI
21 Merkin, J., Russell, C., Chen, P. and Burge, C. B. 2012. Evolutionary dynamics of gene and isoform regulation in mammalian tissues. Science 338, 1593-1599.   DOI
22 Ner-Gaon, H., Halachmi, R., Savaldi-Goldstein, S., Rubin, E., Ophir, R. and Fluhr, R. 2004. Intron retention is a major phenomenon in alternative splicing in Arabidopsis. Plant J. 39, 877-885.   DOI
23 Nilsen, T. W. and Graveley, B. R. 2010. Expansion of the eukaryotic proteome by alternative splicing. Nature 463, 457-463.   DOI
24 Papp, I., Mur, L. A., Dalmadi, A., Dulai, S. and Koncz, C. 2004. A mutation in the Cap Binding Protein 20 gene confers drought tolerance to Arabidopsis. Plant Mol. Biol. 55, 679-686.   DOI
25 Peng, X., Zhang, L., Zhang, L., Liu, Z., Cheng, L., Yang, Y., Shen, S., Chen, S. and Liu, G. 2013. The transcriptional factor LcDREB2 cooperates with LcSAMDC2 to contribute to salt tolerance in Leymus chinensis. Plant Cell Tiss. Organ Cult. 113, 245-256.   DOI
26 Marquez, Y., Brown, J. W., Simpson, C., Barta, A. and Kalyna, M. 2012. Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome Res. 22, 1184-1195.   DOI
27 Kim, J. Y., Park, S. J., Jang, B., Jung, C. H., Ahn, S. J., Goh, C. H., Cho, K., Han, O. and Kang, H. 2007. Functional characterization of a glycine-rich RNA-binding protein 2 in Arabidopsis thaliana under abiotic stress conditions. Plant J. 50, 439-451.   DOI
28 Kim, Y. O., Pan, S., Jung, C. H. and Kang, H. 2007. A zinc finger-containing glycine-rich RNA-binding protein, atRZ-1a, has a negative impact on seed germination and seedling growth of Arabidopsis thaliana under salt or drought stress conditions. Plant Cell Physiol. 48, 1170-1181.   DOI
29 Kong, X., Ma, L., Yang, L., Chen, Q., Xiang, N., Yang, Y. and Hu, X. 2014. Quantitative proteomics analysis reveals that the nuclear cap-binding complex proteins Arabidopsis CBP20 and CBP80 modulate the salt stress response. J. Proteome Res. 13, 2495-2510.   DOI
30 Koncz, C., deJong, F., Villacorta, N., Szakonyi, D. and Koncz, Z. 2012. The spliceosome-activating complex: molecular mechanisms underlying the function of a pleiotropic regulator. Front. Plant Sci. 3, 9.   DOI
31 Licausi, F., van Dongen, J. T., Giuntoli, B., Novi, G., Santaniello, A., Geigenberger, P. and Perata, P. 2010. HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. Plant J. 62, 302-315.   DOI
32 Laloum, T., Martín, G. and Duque, P. 2018. Alternative splicing control of abiotic stress responses. Trends Plant Sci. 23, 140-150.   DOI
33 Lee, B. H., Kapoor, A., Zhu, J. and Zhu, J. K. 2006. STABILIZED1, a stress-upregulated nuclear protein, is required for pre-mRNA splicing, mRNA turnover, and stress tolerance in Arabidopsis. Plant Cell 18, 1736-1749.   DOI
34 Li, Q., Xiao, G. and Zhu, Y. X. 2014. Single-nucleotide resolution mapping of the Gossypium raimondii transcriptome reveals a new mechanism for alternative splicing of introns. Mol. Plant 7, 829-840.   DOI
35 Liu, J., Sun, N., Liu, M., Liu, J., Du, B., Wang, X. and Qi, X. 2013. An autoregulatory loop controlling Arabidopsis HsfA2 expression: role of heat shock-induced alternative splicing. Plant Physiol. 162, 512-521.   DOI
36 Long, J. C. and Caceres, J. F. 2009. The SR protein family of splicing factors: master regulators of gene expression. Biochem. J. 417, 15-27.   DOI
37 Lu, C. A., Huang, C. K., Huang, W. S., Huang, T. S., Liu, H. Y. and Chen, Y. F. 2020. DEAD-box RNA helicase 42 plays a critical role in pre-mRNA splicing under cold stress. Plant Physiol. 182, 255-271.   DOI
38 de la Mata, M., Alonso, C. R., Kadener, S., Fededa, J. P., Blaustein, M., Pelisch, F., Cramer, P., Bentley, D. and Kornblihtt, A. R. 2003. A slow RNA polymerase II affects alternative splicing in vivo. Mol. Cell 12, 525-532.   DOI
39 Lu, F., Li, G., Cui, X., Liu, C., Wang, X. and Cao, X. 2008. Comparative analysis of JmjC domain-containing proteins reveals the potential histone demethylases in Arabidopsis and rice. J. Integr. Plant Biol. 50, 886-896.   DOI
40 de Francisco Amorim, M., Willing, E. M., Szabo, E. X., Francisco-Mangilet, A. G., Droste-Borel, I., Maček, B., Schneeberger, K. and Laubinger, S. 2018. The U1 snRNP subunit LUC7 modulates plant development and stress responses via regulation of alternative splicing. Plant Cell 30, 2838-2854.   DOI
41 Deng, Y., Humbert, S., Liu, J. X., Srivastava, R., Rothstein, S. J. and Howell, S. H. 2011. Heat induces the splicing by IRE1 of a RNA encoding a transcription factor involved in the unfolded protein response in Arabidopsis. Proc. Natl. Acad. Sci. USA 108, 7247-7252.   DOI
42 Duque, P. 2011. A role for SR proteins in plant stress responses. Plant Signal. Behav. 6, 49-54.   DOI
43 Favero Peixoto-Junior, R., Mara de Andrade, L., Dos Santos Brito, M., Macedo Nobile, P., Palma Boer Martins, A., Domingues Carlin, S., Vasconcelos Ribeiro, R., de Souza Goldman, M. H., Nebo Carlos de Oliveira, J. F., Vargas de Oliveira Figueira, A. and Creste, S. 2018. Overexpression of ScMYBAS1 alternative splicing transcripts differentially impacts biomass accumulation and drought tolerance in rice transgenic plants. PLoS ONE 13, e0207534.   DOI
44 Gu, J., Ma, S., Zhang, Y., Wang, D., Cao, S. and Wang, Z. Y. 2020. Genome-wide identification of cassava serine/arginine- rich proteins: insights into alternative splicing of pre-mRNAs and response to abiotic stress. Plant Cell Physiol. 61, 178-191.   DOI
45 Lv, A., Su, L., Liu, X., Xing, Q., Huang, B., An, Y. and Zhou, P. 2018. Characterization of Dehydrin protein, CdDHN4-L and CdDHN4-S, and their differential protective roles against abiotic stress in vitro. BMC Plant Biol. 18, 299.   DOI
46 Macias, M. J., Wiesner, S. and Sudol, M. 2002. WW and SH3 domains, two different scaffolds to recognize proline-rich ligands. FEBS Lett. 513, 30-37.   DOI
47 Feng, J., Li, J., Gao, Z., Lu, Y., Yu, J., Zheng, Q., Yan, S., Zhang, W., He, H., Ma, L. and Zhu, Z. 2015. SKIP confers osmotic tolerance during salt stress by controlling alternative gene splicing in Arabidopsis. Mol. Plant 8, 1038-1052.   DOI
48 Gu, J., Xia, Z., Luo, Y., Jiang, X., Qian, B., Xie, H., Zhu, J. K., Xiong, L., Zhu, J. and Wang, Z. Y. 2018. Spliceosomal protein U1A is involved in alternative splicing and salt stress tolerance in Arabidopsis thaliana. Nucleic Acids Res. 46, 1777-1792.   DOI
49 Han, S. P., Tang, Y. H. and Smith, R. 2010. Functional diversity of the hnRNPs: past, present and perspectives. Biochem. J. 430, 379-392.   DOI
50 Hernando, C. E., García Hourquet, M., de Leone, M. J., Careno, D., Iserte, J., Mora Garcia, S. and Yanovsky, M. J. 2019. A role for Pre-mRNA-PROCESSING PROTEIN 40C in the control of growth, development, and stress tolerance in Arabidopsis thaliana. Front. Plant Sci. 10, 1019.   DOI
51 Witten, J. T. and Ule, J. 2011. Understanding splicing regulation through RNA splicing maps. Trends Genet. 27, 89-97.   DOI
52 Wahl, M. C., Will, C. L. and Luhrmann, R. 2009. The spliceosome: design principles of a dynamic RNP machine. Cell 136, 701-718.   DOI
53 Will, C. L. and Lührmann, R. 2011. Spliceosome structure and function. Cold Spring Harb. Perspect. Biol. 3, a003707.   DOI
54 Wilusz, C. J. and Wilusz, J. 2013. Lsm proteins and Hfq: life at the end. RNA Biol. 10, 592-601.   DOI
55 Jiang, J., Liu, X., Liu, C., Liu, G., Li, S. and Wang, L. 2017. Integrating omics and alternative splicing reveals insights into grape response to high temperature. Plant Physiol. 173, 1502-1518.   DOI
56 Howard, J. M. and Sanford, J. R. 2015. The RNAissance family: SR proteins as multifaceted regulators of gene expression. Wiley Interdiscip. Rev. RNA 6, 93-110.
57 Huertas, R., Catal, R., Jimenez-Gomez, J. M., Mar Castellano, M., Crevillen, P., Piñeiro, M., Jarillo, J. A. and Salinas, J. 2019. Arabidopsis SME1 regulates plant development and response to abiotic stress by determining spliceosome activity specificity. Plant Cell 31, 537-554.   DOI
58 Hugouvieux, V., Kwak, J. M. and Schroeder, J. I. 2001. An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis. Cell 106, 477-487.   DOI
59 Iwata, Y., Fedoroff, N. V. and Koizumi, N. 2008. Arabidopsis bZIP60 is a proteolysis-activated transcription factor involved in the endoplasmic reticulum stress response. Plant Cell 20, 3107-3121.   DOI
60 Izaurralde, E., Lewis, J., McGuigan, C., Jankowska, M., Darzynkiewicz, E. and Mattaj, I. W. 1994. A nuclear cap binding protein complex involved in pre-mRNA splicing. Cell 78, 657-668.   DOI
61 Kao, H. Y. and Siliciano, P. G. 1996. Identification of Prp40, a novel essential yeast splicing factor associated with the U1 small nuclear ribonucleoprotein particle. Mol. Cell. Biol. 16, 960-967.   DOI
62 Kim, G. D., Yoo, S. D. and Cho, Y. H. 2018. STABILIZED1 as a heat stress-specific splicing factor in Arabidopsis thaliana. Plant Signal. Behav. 13, e1432955.   DOI
63 Kim, J. S., Jung, H. J., Lee, H. J., Kim, K. A., Goh, C. H., Woo, Y., Oh, S. H., Han, Y. S. and Kang, H. 2008. Glycinerich RNA-binding protein7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana. Plant J. 55, 455-466.   DOI
64 Remy, E., Cabrito, T. R., Baster, P., Batista, R. A., Teixeira, M. C., Friml, J., Sa-Correia, I. and Duque, P. 2013. A major facilitator superfamily transporter plays a dual role in polar auxin transport and drought stress tolerance in Arabidopsis. Plant Cell 25, 901-926.   DOI
65 Yoshida, T., Sakuma, Y., Todaka, D., Maruyama, K., Qin, F., Mizoi, J., Kidokoro, S., Fujita, Y., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2008. Functional analysis of an Arabidopsis heat-shock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2A stressregulatory system. Biochem. Biophys. Res. Commun. 368, 515-521.   DOI
66 Yu, X., Meng, X., Liu, Y., Wang, X., Wang, T. J., Zhang, A., Li, N., Qi, X., Liu, B. and Xu, Z. Y. 2019. The chromatin remodeler ZmCHB101 impacts alternative splicing contexts in response to osmotic stress. Plant Cell Rep. 38, 131-145.   DOI
67 Zhang, G., Guo, G., Hu, X., Zhang, Y., Li, Q., Li, R., Zhuang, R., Lu, Z., He, Z., Fang, X., Chen, L., Tian, W., Tao, Y., Kristiansen, K., Zhang, X., Li, S., Yang, H., Wang, J. and Wang, J. 2010. Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome. Genome Res. 20, 646-654.   DOI
68 Raczynska, K. D., Simpson, C. G., Ciesiolka, A., Szewc, L., Lewandowska, D., McNicol, J., Szweykowska-Kulinska, Z., Brown, J. W. and Jarmolowski, A. 2010. Involvement of the nuclear cap-binding protein complex in alternative splicing in Arabidopsis thaliana. Nucleic Acids Res. 38, 265-378.   DOI
69 Reddy, A. S. N., Marquez, Y., Kalyna, M. and Barta, A. 2013. Complexity of the alternative splicing landscape in plants. Plant Cell 25, 3657-3683.   DOI
70 Ron, D. and Walter, P. 2007. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8, 519-529.   DOI
71 Yeap, W. C., Namasivayam, P. and Ho, C. L. 2014. HnRNPlike proteins as post-transcriptional regulators. Plant Sci. 227, 90-100.   DOI