Browse > Article
http://dx.doi.org/10.5713/ajas.15.0525

Characterizing Milk Production Related Genes in Holstein Using RNA-seq  

Seo, Minseok (Interdisciplinary Program in Bioinformatics, Seoul National University)
Lee, Hyun-Jeong (Interdisciplinary Program in Bioinformatics, Seoul National University)
Kim, Kwondo (Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Sciences, Seoul National University)
Caetano-Anolles, Kelsey (Department of Animal Sciences, University of Illinois)
Jeong, Jin Young (Division of Animal Products R&D, National Institute of Animal Science)
Park, Sungkwon (Animal Nutritional & Physiology Team, National Institute of Animal Science)
Oh, Young Kyun (Animal Nutritional & Physiology Team, National Institute of Animal Science)
Cho, Seoae (CHO&KIM genomics)
Kim, Heebal (Interdisciplinary Program in Bioinformatics, Seoul National University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.29, no.3, 2016 , pp. 343-351 More about this Journal
Abstract
Although the chemical, physical, and nutritional properties of bovine milk have been extensively studied, only a few studies have attempted to characterize milk-synthesizing genes using RNA-seq data. RNA-seq data was collected from 21 Holstein samples, along with group information about milk production ability; milk yield; and protein, fat, and solid contents. Meta-analysis was employed in order to generally characterize genes related to milk production. In addition, we attempted to investigate the relationship between milk related traits, parity, and lactation period. We observed that milk fat is highly correlated with lactation period; this result indicates that this effect should be considered in the model in order to accurately detect milk production related genes. By employing our developed model, 271 genes were significantly (false discovery rate [FDR] adjusted p-value<0.1) detected as milk production related differentially expressed genes. Of these genes, five (albumin, nitric oxide synthase 3, RNA-binding region (RNP1, RRM) containing 3, secreted and transmembrane 1, and serine palmitoyltransferase, small subunit B) were technically validated using quantitative real-time polymerase chain reaction (qRT-PCR) in order to check the accuracy of RNA-seq analysis. Finally, 83 gene ontology biological processes including several blood vessel and mammary gland development related terms, were significantly detected using DAVID gene-set enrichment analysis. From these results, we observed that detected milk production related genes are highly enriched in the circulation system process and mammary gland related biological functions. In addition, we observed that detected genes including caveolin 1, mammary serum amyloid A3.2, lingual antimicrobial peptide, cathelicidin 4 (CATHL4), cathelicidin 6 (CATHL6) have been reported in other species as milk production related gene. For this reason, we concluded that our detected 271 genes would be strong candidates for determining milk production.
Keywords
RNA-seq; Holstein; Milk Production; Meta-analysis; Milk Yield; Differentially Expressed Gene;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Accorsi, P. A., B. Pacioni, C. Pezzi, M. Forni, D. J. Flint, and E. Seren. 2002. Role of prolactin, growth hormone and insulinlike growth factor 1 in mammary gland involution in the dairy cow. J. Dairy Sci 85:507-513.   DOI
2 Canovas, A., G. Rincon, A. Islas-Trejo, S. Wickramasinghe, and J. F. Medrano. 2010. SNP discovery in the bovine milk transcriptome using RNA-Seq technology. Mamm. Genome 21:592-598.   DOI
3 Chauhan, V. and J. Hayes. 1991. Genetic parameters for first lactation milk production and composition traits for Holsteins using multivariate restricted maximum likelihood. J Dairy Sci 74:603-610.   DOI
4 Constantin, A. and C. Csatlos. 2010. Research on the influence of microwave treatment on milk composition. Bulletin of the Transilvania University of Brasov 3:52.
5 Cui, X. G., Y. L. Hou, S. H. Yang, Y. Xie, S. L. Zhang, Y. Zhang, Q. Zhang, X. M. Lu, G. E. Liu, and D. X. Sun. 2014. Transcriptional profiling of mammary gland in Holstein cows with extremely different milk protein and fat percentage using RNA sequencing. BMC Genomics 15:226.   DOI
6 Glasser, F., A. Ferlay, and Y. Chilliard. 2008. Oilseed lipid supplements and fatty acid composition of cow milk: A metaanalysis. J. Dairy Sci. 91:4687-4703.   DOI
7 Hennighausen, L. and G. W. Robinson. 2001. Signaling pathways in mammary gland development. Dev. Cell 1:467-475.   DOI
8 Hill, P. D., J. C. Aldag, and R. T. Chatterton. 1999. Effects of pumping style on milk production in mothers of non-nursing preterm infants. J. Hum. Lact. 15:209-216.   DOI
9 McDonald, T. L., M. A. Larson, D. R. Mack, and A. Weber. 2001. Elevated extrahepatic expression and secretion of mammaryassociated serum amyloid A 3 (M-SAA3) into colostrum. Vet. Immunol. Immunopathol. 83:203-211.   DOI
10 Mensink, R. P., P. L. Zock, A. D. Kester, and M. B. Katan. 2003. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am. J. Clin. Nutr. 77:1146-1155.   DOI
11 Neale, B. M., S. E. Medland, S. Ripke, P. Asherson, B. Franke, K.-P. Lesch, S. V. Faraone, T. T. Nguyen, H. Schafer, and P. Holmans et al. 2010. Meta-analysis of genome-wide association studies of attention-deficit/hyperactivity disorder. J. Am. Acad. Child Adolesc. Psychiatry 49:884-897.   DOI
12 Minozzi, G., J. L. Williams, A. Stella, F. Strozzi, M. Luini, M. L. Settles, J. F. Taylor, R. H. Whitlock, R. Zanella, and H. L. Neibergs. 2012. Meta-analysis of two genome-wide association studies of bovine paratuberculosis. Plos One 7:e32578.   DOI
13 Mizoguchi, Y., T. Hirano, T. Itoh, H. Aso, A. Takasuga, Y. Sugimoto, and T. Watanabe. 2010. Differentially expressed genes during bovine intramuscular adipocyte differentiation profiled by serial analysis of gene expression. Anim. Genet. 41:436-441.
14 Molenaar, A. J., D. P. Harris, G. H. Rajan, M. L. Pearson, M. R. Callaghan, L. Sommer, V. C. Farr, K. E. Oden, M. C. Miles, and R. S. Petrova et al. 2009. The acute-phase protein serum amyloid A3 is expressed in the bovine mammary gland and plays a role in host defence. Biomarkers 14:26-37.   DOI
15 Onetti, S. G. and R. R. Grummer. 2004. Response of lactating cows to three supplemental fat sources as affected by forage in the diet and stage of lactation: A meta-analysis of literature. Anim. Feed Sci. Technol. 115:65-82.   DOI
16 Park, D. S., H. Lee, P. G. Frank, B. Razani, A. V. Nguyen, A. F. Parlow, R. G. Russell, J. Hulit, R. G. Pestell, and M. P. Lisanti. 2002. Caveolin-1-deficient mice show accelerated mammary gland development during pregnancy, premature lactation, and hyperactivation of the Jak-2/STAT5a signaling cascade. Mol. Biol. Cell 13:3416-3430.   DOI
17 Pepe, G., G. C. Tenore, R. Mastrocinque, P. Stusio, and P. Campiglia. 2013. Potential anticarcinogenic peptides from bovine milk. J. Amino Acids Article ID 939804.
18 Sorensen, M., J. V. Norgaard, P. K. Theil, M. Vestergaard, and K. Sejrsen. 2006. Cell turnover and activity in mammary tissue during lactation and the dry period in dairy cows. J. Dairy Sci. 89:4632-4639.   DOI
19 Renehan, A. G., M. Tyson, M. Egger, R. F. Heller, and M. Zwahlen. 2008. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 371:569-578.   DOI
20 Seo, M., J. Yoon, and T. Park. 2015. GRACOMICS: software for graphical comparison of multiple results with omics data. BMC Genomics 16:256.   DOI
21 Sugimoto, K., N. Ichikawa-Tomikawa, S. Satohisa, Y. Akashi, R. Kanai, T. Saito, N. Sawada, and H. Chiba. 2013. The tightjunction protein claudin-6 induces epithelial differentiation from mouse F9 and embryonic stem cells. PloS one 8:e75106.   DOI
22 Takasuga, A., T. Watanabe, Y. Mizoguchi, T. Hirano, N. Ihara, A. Takano, K. Yokouchi, A. Fujikawa, K. Chiba, and N. Kobayashi et al. 2007. Identification of bovine QTL for growth and carcass traits in Japanese Black cattle by replication and identical-by-descent mapping. Mamm. Genome 18:125-136.   DOI
23 Tao, S., J. W. Bubolz, B. C. Do Amaral, I. M. Thompson, M. J. Hayen, S. E. Johnson, and G. E. Dahl. 2011. Effect of heat stress during the dry period on mammary gland development. J. Dairy Sci. 94:5976-5986.   DOI
24 Tezer, M., Y. Ozluk, O. Sanli, O. Asoglu, and A. Kadioglu. 2012. Nitric oxide may mediate nipple erection. J. Androl. 33:805-810.   DOI
25 Thompson, S. G. and J. Higgins. 2002. How should metaregression analyses be undertaken and interpreted? Stat. Med. 21:1559-1573.   DOI
26 Yarus, S., J. M. Rosen, A. M. Cole, and G. Diamond. 1996. Production of active bovine tracheal antimicrobial peptide in milk of transgenic mice. Proc. Nat. Acad. Sci. 93:14118-14121.   DOI
27 Vargas, B., A. F. Groen, M. Herrero, and J. A. Van Arendonk. 2002. Economic values for production and functional traits in Holstein cattle of Costa Rica. Livest. Prod. Sci. 75:101-116.   DOI
28 Wang, Z., M. Gerstein, and M. Snyder. 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10:57-63.   DOI
29 Wickramasinghe, S., G. Rincon, A. Islas-Trejo, and J. F. Medrano. 2012. Transcriptional profiling of bovine milk using RNA sequencing. BMC Genomics 13:45.   DOI
30 Yoon, J. T., J. H. Lee, C. K. Kim, Y. C. Chung, and C.-H. Kim. 2004. Effects of milk production, season, parity and lactation period on variations of milk urea nitrogen concentration and milk components of Holstein dairy cows. Asian Australas. J. Anim. Sci. 17:479-484.   DOI