DOI QR코드

DOI QR Code

Genome editing of hybrid poplar (Populus alba × P. glandulosa) protoplasts using Cas9/gRNA ribonucleoprotein

현사시나무 원형질체에서 리보핵산단백질을 활용한 유전자 교정 방법 연구

  • Park, Su Jin (Department of Forest Bio-resources, National Institute of Forest Science) ;
  • Choi, Young-Im (Department of Forest Bio-resources, National Institute of Forest Science) ;
  • Jang, Hyun A (Department of Forest Bio-resources, National Institute of Forest Science) ;
  • Kim, Sang-Gyu (Department of Biological Science, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Choi, Hyunmo (Forest Biomaterials Research Center, National Institute of Forest Science) ;
  • Kang, Beum-Chang (Center for Genome Engineering, Institute for Basic Science (IBS)) ;
  • Lee, Hyoshin (Department of Forest Bio-resources, National Institute of Forest Science) ;
  • Bae, Eun-Kyung (Department of Forest Bio-resources, National Institute of Forest Science)
  • 박수진 (국립산림과학원 산림생명자원연구부) ;
  • 최영임 (국립산림과학원 산림생명자원연구부) ;
  • 장현아 (국립산림과학원 산림생명자원연구부) ;
  • 김상규 (한국과학기술원 생명과학과) ;
  • 최현모 (국립산림과학원 산림바이오소재연구소) ;
  • 강범창 (기초과학연구원 유전체 교정 연구단) ;
  • 이효신 (국립산림과학원 산림생명자원연구부) ;
  • 배은경 (국립산림과학원 산림생명자원연구부)
  • Received : 2020.11.23
  • Accepted : 2021.01.05
  • Published : 2021.03.31

Abstract

Targeted genome editing using the CRISPR/Cas9 system is a ground-breaking technology that is being widely used to produce plants with useful traits. However, for woody plants, only a few successful attempts have been reported. These successes have used Agrobacterium-mediated transformation, which has been reported to be very efficient at producing genetically modified trees. Nonetheless, there are unresolved problems with plasmid sequences that remain in the plant genome. In this study, we demonstrated a DNA-free genome editing technique in which purified CRISPR/Cas9 ribonucleoproteins (RNPs) are delivered directly to the protoplasts of a hybrid poplar (Populus alba × Populus glandulosa). We designed three single-guide RNAs (sgRNAs) to target the stress-associated protein 1 gene (PagSAP1) in the hybrid poplar. Deep sequencing results showed that pre-assembled RNPs had a more efficient target mutagenesis insertion and deletion (indel) frequency than did non-assembled RNPs. Moreover, the RNP of sgRNA3 had a significantly higher editing efficacy than those of sgRNA1 and sgRNA2. Our results suggest that the CRISPR/Cas9 ribonucleoprotein-mediated transfection approach is useful for the production of transgene-free genome-edited tree plants.

CRISPR/Cas9에 의한 유전자 교정 기술은 유용 형질을 갖는 작물 및 임목의 육성에 있어 널리 사용되고 있는 핵심 기술이다. 유전자 교정 임목 육성에는 아그로박테리움에 의한 형질전환 방법이 높은 효율로 시행된 연구가 많았고 따라서 형질전환에 사용된 플라스미드 서열이 식물 유전체 안에 존재한다는 문제가 남아 있었다. 본 연구에서는 CRISPR/Cas9을 사용하여 유전자 교정 임목을 육성하는 데 기존에 알려진 벡터 도입 기술이 아닌, 단일 가닥 가이드 RNA (sgRNA)와 Cas9 단백질을 혼합하여 만든 리보핵산단백질을 현사시나무 원형질체에 도입하는 방법을 기술하였다. 염 스트레스 내성 관련 인자 PagSAP1 유전자를 표적으로 하는 3종류의 sgRNA를 디자인하고, 각 sgRNA와 Cas9 단백질을 혼합하여 만든 리보핵산단백질을 원형질체에 도입하였다. 표적화 딥시퀀싱을 통해 리보핵산단백질 형성 시 sgRNA와 Cas9 단백질을 혼합하고 일정 시간 배양하여 안정화되는 시간이 필요한 것을 확인하였다. 또한 sgRNA3의 리보핵산단백질이 sgRNA1, sgRNA2의 리보핵산단백질보다 높은 교정 효율을 보이는 것을 확인하였다. 본 실험을 통해 리보핵산단백질을 이용한 유전자 교정 기술이 임목에도 적용될 수 있음이 확인되었고, 이는 외래 유전자 없이 유전자 교정 임목을 육성하는 데 활용할 수 있을 것으로 사료된다.

Keywords

Acknowledgement

본 연구는 산림청 국립산림과학원 연구사업(세부과제명: 유전자가위를 이용한 임목 유전체 교정 기술 개발, 과제번호: FG0702-2018-01-2018)의 지원에 의해 이루어진 것임.

References

  1. Cong L, Ran FA, Cox D, Lin S, Barrretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819-823 https://doi.org/10.1126/science.1231143
  2. Cove DJ (1979) The uses of isolated protoplasts in plant genetics. Heredity 43:295-314 https://doi.org/10.1038/hdy.1979.84
  3. Elorriaga E, Klocko AL, MA C, Strauss SH (2018) Variation in mutation spectra among CRISPR/Cas9 mutagenized poplars. Front Plant Sci 9:594 https://doi.org/10.3389/fpls.2018.00594
  4. Fan D, Liu T, Li C, Jiao B, Li S, Hou Y, Luo K (2015) Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Sci Rep 5:12217 https://doi.org/10.1038/srep12217
  5. Fan Y, Xin S, Dai X, Yang X, Huang H, Hua Y (2020) Efficient genome editing of rubber tree (hevea brasiliensis) protoplasts using CRISPR/Cas9 ribonucleoproteins. Ind Crops Prod 146:112146 https://doi.org/10.1016/j.indcrop.2020.112146
  6. Genetic Literacy Project (2020) Human and agriculture gene editing: Regulations and index. Available online at: https://crispr-gene-editing-regs-tracker.geneticliteracyproject.org
  7. Guo J, Morrell-Falvey JL, Labbe JL, Muchero W, Kallure UC, Tuskan GA, Chen J-G (2012) Highly efficient isolation of Populus mesophyll protoplasts and its application in transient expression assays. PLoS ONE 7:e44908 https://doi.org/10.1371/journal.pone.0044908
  8. Hilscher J, Burstmayr H, Stoger E (2017) Targeted modification of plant genomes for precision crop breeding. Biotechnol J 12:1-4
  9. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816-821 https://doi.org/10.1126/science.1225829
  10. Kim H, Kim S-T, Ryu J, Kang B-C, Kim J-S, Kim S-G (2017) CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat Comm 8:14406 https://doi.org/10.1038/ncomms14406
  11. Kim Y-S (2004) RNAi: A powerful reverse genetic tool. J. Korean Soc Endocrinol 19:109-119
  12. Lee S-W (2019) Current status on the modification of the scope for LMO regulation on the gene edited plants with no remnants of inserted foreign DNA fragments. J Plant Biotechnol 46: 137-142 https://doi.org/10.5010/JPB.2019.46.3.137
  13. Liang Z, Chen K, Li T, Zhang Y, Wang Y, Zhao Q, Liu J, Zhang H, Liu C, Ran Y, Gao C (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Comm 8:14261 https://doi.org/10.1038/ncomms14261
  14. Liu W, Rudis MR, Cheplick MH, Millwood RJ, Yang J-P, Ondzighi-Assoume CA, Montgomery GA, Burris KP, Mazarei M, Chesnut JD, Stewart CN Jr. (2020) Lipofection-mediated genome editing using DNA-free delivery of the Cas9/gRNA ribonucleoprotein into plant cells. Plant Cell Rep 39:245-257 https://doi.org/10.1007/s00299-019-02488-w
  15. Malnoy M, Viola R, Jung M, Koo O, Kim S, Kim J-S, Velasco R, Kanchiswamy CM (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7:1904
  16. Moon SB, Lee JM, Kang JG, Lee N-E, Ha D-I, Kim DY, Kim SH, Yoo K, Kim D, Ko J-H, Kim Y-S (2018) Highly efficient genome editing by CRISPR-Cpf1 using CRISPR RNA with a uridinylate-rich 3'-overhang. Nat Comm 9:3651 https://doi.org/10.1038/s41467-018-06129-w
  17. Muhr M, Paulat M, Awwanah M, Brinkkotter M, Teichmann T (2018) CRISPR/Cas9-mediated knockout of Populus BRANCHED1 and BRANCHED2 orthologs reveals a major function in bud outgrowth control. Tree Physiol. 38:1588-1597 https://doi.org/10.1093/treephys/tpy088
  18. Murovec J, Gucek K, Bohanec B, Avbelj M, Jerala R (2018) DNA-free genome editing of Brassica oleracea and B. rapa protoplasts using CRISPR-Cas9 ribonucleoprotein complexes. Front Plant Sci 9:1594 https://doi.org/10.3389/fpls.2018.01594
  19. Park J, Bae S, Kim J-S (2015) Cas-Designer: a web-based tool for choice of CRISPR-Cas9 target sites. Bioinformatics 31: 4014-4016 https://doi.org/10.1093/bioinformatics/btv537
  20. Park J, Kim K, Kim J-S, Bae S (2017) Cas-Analyzer: an online tool for assessing genome editing results using NGS data. Bioinformatics 33:286-288 https://doi.org/10.1093/bioinformatics/btw561
  21. Park S-C, Houng Y-H, Kim K-M, Kim J-K, Koh H-J (2019) Gene-edited crops: present status and their future. Korean J Breed Sci 51:175-183 https://doi.org/10.9787/KJBS.2019.51.3.175
  22. Park Y-G, Choi M-S, Kim J-H (1990) Plant regeneration of Populus glandulosa from mesophyll protoplast. Korean J Plant Tissue Culture 17:189-199
  23. Park Y-G, Han KH (1986) Isolation and culture of mesophyll protoplasts from in vitro cultured Populus alba × P. glandulosa. J Korean Soc For 73:33-42
  24. Park Y-G, Son SH (1988) Culture and regeneration of Populus alba × glandulosa leaf protoplasts isolated from in vitro cultured explant. J Korean Soc For 77:206-215
  25. Qiu D, Bai S, Ma J, Zhang L, Shao F, Zhang K, Yang Y, Sun T, Juang J, Zhou Y, Galbraith DW, Wang Z, Sun G (2019) The genome of Poplar alba × Populus tremula var. glandulosa clone 84K. DNA Res 26:423-431 https://doi.org/10.1093/dnares/dsz020
  26. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281-2308 https://doi.org/10.1038/nprot.2013.143
  27. Sant'Ana RRA, Caprestano CA, Nodari RO, Agapito-Tenfen SZ (2020) PEG-delivered CRISPR-Cas9 ribonucleoproteins system for gene-editing screening of maize protoplasts. Genes 11:1029 https://doi.org/10.3390/genes11091029
  28. Schmidt SM, Belisle M, Frommer WB (2020) The evolving landscape around genome editing in agriculture. EMBO reports 21:e50680
  29. Son Y (2009) From science area to politic area; Development and distribution of Eunsuwonsasi tree. The Korean J Hist Sci. 31:437-474
  30. Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I et al. (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313 (5793), 1596-1604. https://doi.org/10.1126/science.1128691
  31. USDA-AHPIS (2020) The SECURE rule. Available online at: https://www.aphis.usda.gov/aphis/ourfocus/biotechnology/biotech-rule-revision/secure-rule
  32. Woo JW, Kim J, Kwon SI, Corvalan C, Cho SW, Kim H, Kim SG, Kim ST, Choe S, Kim J-S (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotech 33:1162-1164 https://doi.org/10.1038/nbt.3389
  33. Wu S, Zhu H, Liu J, Yang Q, Shao X, Bi F, Hu C, Huo H, Chen K, Yi G (2020) Establishment of a PEG-mediated protoplast transformation system based on DNA and CRISPR/Cas9 ribonucleoprotein complexes for banana. BMC Plant Biol 20:425 https://doi.org/10.1186/s12870-020-02609-8
  34. Yoon S-K, Bae E-K, Lee H, Choi Y-I, Han M, Choi H, Kang K-S, Park E-J (2018) Downregulation of stress-associated protein 1 (PagSAP1) increases salt stress tolerance in poplar (Populus alba × P.glandulosa). Trees 32:823-833 https://doi.org/10.1007/s00468-018-1675-2
  35. Zhou X, Jacobs TB, Xue L-J, Harding SA, Tsai C-J (2015) Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate:CoA ligase specificity and redundancy. New Phytol 208:298-301 https://doi.org/10.1111/nph.13470