• Title/Summary/Keyword: rigid surface

Search Result 500, Processing Time 0.028 seconds

Optimum Design of Draw-bead Force in Sheet Metal Stamping using Rigid-plastic FEM and Responses Surface Methodology (강소성 유한요소해석과 반응표면분석법을 이용한 박판성형공정에서의 드로우 비드력 최적설계)

  • Kim, Se-Ho;Huh, Hoon;Tezuka, Akira
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.143-148
    • /
    • 1999
  • Design optimization is performed to calculated the draw-bead force for satisfying the design re-quirements. For an analysis tool a rigid-plastic finite element method with modified membrane element is adopted. response surface methodology is utilized for constructing the approximation surface for the optimum searching of draw bead force in sheet metal forming process. the algorithm developed is ap-plied to a design of the draw bead forces in a deep drawing process. The results show that the design of process parameters is applicable in complex metal forming analysis. It is also noted that the present algo-rithm enhances the stable optimum solution with small times of optimization iteration.

  • PDF

Suppression of Sound Transmission through Composite Plate into Cavity with Anisotropic Piezoelectric Actuators (이방성 압전 작동기를 이용한 복합재료 평판을 통한 공동내의 소음 억제)

  • 윤기원;김승조
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.695-700
    • /
    • 1997
  • A direct boundary element method(DBEM) is developed for thin bodies whose surfaces are rigid or compliant. The Helmholtz integral equation and its normal derivative integral equation are adopted simultaneously to calculate the pressure on both sides of the thin body, instead of the jump values across it, to account for the different surface conditions of each side. Unlike the usual assumption, the normal velocity is assumed to be discontinuous across the thin body. In this approach, only the neutral surface of the thin body has to be discretized. The method is validated by comparison with analytic and/or numerical results for acoustic scattering and radiation from several surface conditions of the thin body; the surfaces are rigid when stationary or vibrating, and part of the interior surface is lined with a sound-absorbing material.

  • PDF

A Study on the Rotating Displacement Measurement of Rigid Body by ESPI Method (ESPI법에 의한 강체 회전 변위 측정에 관한 연구)

  • 김경석;홍명석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.2
    • /
    • pp.125-133
    • /
    • 1993
  • Electronic Speckle Pattern Interferometry(ESPI) using a CW laser, a video system and image processor was applied to the rotating displacement of rigid body. ESPI require no special surface preparation or attachments and displacements between any two arbitrary points on the surface can be measured. The characteristic speckle pattern formed when imaging a scattering surface illuminated by laser light retains phase information, which can be used for interferometric measurement of surface displacement. The application of this principle to measuring in-plane displacement resolved in one direction is described, together with the novel use of television equipment to detect and process the information contained in the speckle pattern. This is faster, and more convenient and versatile than customary photographic methods.

  • PDF

Estimation of Vibration Level Inside an Engine Based on Rigid Body Theory and Measurement Technology (강체 운동 해석 및 실험을 통한 엔진 내부 진동 예측에 관한 연구)

  • Kim, Byung-Hyun;Park, Jong-Ho;Kim, Eui-Yeol;Lee, Sang-Kwon;Kim, Tae-Jeong;Heo, Jeong-Ki
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.11
    • /
    • pp.1043-1050
    • /
    • 2011
  • This paper presents practical results for the estimation of vibration level inside a powertrain based on the rigid body theory and measurement. The vibration level of inside powertrain has been used for the calculation of excitation force of an engine indirectly. However it was difficult to estimate or measure the vibration level inside of a powertrain when a powertrain works on the driving condition of a vehicle. To do this work, the rigid body theory is employed. At the first, the vibration on the surface of a powertrain is measured and its results are secondly used for the estimation the vibration level inside of powertrain together with rigid body theory. Also did research on how to decrease the error rate when the rigid body theory is applied. This method is successfully applied to the estimation of the vibration level on arbitrary point of powertrain on the driving condition at the road.

Dynamic analysis of water storage tank with rigid block at bottom

  • Adhikary, Ranjan;Mandal, Kalyan Kumar
    • Ocean Systems Engineering
    • /
    • v.8 no.1
    • /
    • pp.57-77
    • /
    • 2018
  • The present paper deals with the finite element analysis of water tanks with rigid baffle. Fluid is discretized by two dimensional eight-node isoparametric elements and the governing equation is simulated by pressure based formulation to reduce the degrees of freedom in the domain. Both free vibration and force vibration analysis are carried out for different sizes and positions of block at tank bottom. The fundamental frequency depends on block height and it reduces with the increase of block height. The variation of hydrodynamic pressure on tank walls not only depends of the exciting frequency but also on the size and position of rigid block at tank bottom. The hydrodynamic pressure has higher value when the exciting frequency is equal and lower than the fundamental frequency of the water in the tank. Similarly, the hydrodynamic pressure increases with the increase of width of the block for all exciting frequencies when the block is at the centre of tank. The left and right walls of tank have experienced different hydrodynamic pressure when the block is placed at off-centre. However, the increase in hydrodynamic pressure on nearest tank wall becomes insignificant after a certain value of the distance between the wall and the rigid block.

Simulation of free falling rigid body into water by a stabilized incompressible SPH method

  • Aly, Abdelraheem M.;Asai, Mitsuteru;Sonoda, Yoshimi
    • Ocean Systems Engineering
    • /
    • v.1 no.3
    • /
    • pp.207-222
    • /
    • 2011
  • A stabilized incompressible smoothed particles hydrodynamics (ISPH) method is utilized to simulate free falling rigid body into water domain. Both of rigid body and fluid domain are modeled by SPH formulation. The proposed source term in the pressure Poisson equation contains two terms; divergence of velocity and density invariance. The density invariance term is multiplied by a relaxed parameter for stabilization. In addition, large eddy simulation with Smagorinsky model has been introduced to include the eddy viscosity effect. The improved method is applied to simulate both of free falling vessels with different materials and water entry-exit of horizontal circular cylinder. The applicability and efficiency of improved method is tested by the comparisons with reference experimental results.

Rigid Plasticity Finite Element Analysis of the Bending of Extrusion Product Using the Square dies (2차원평원 압출가공의 굽힘에 관한 강소성 유한요소 해석)

  • 박대윤
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.80-83
    • /
    • 1999
  • Rigid Plasticity Finite Element Analysis is developed for the shapes of dead metal zone and the curving velocity distribution in the eccentric square dies extrusion. The shape of dead metal zone is defined as the boundary surface with the maximum friction constant between the deformable zone and the rigid zone. The curving phenomenon in the eccentric square dies is caused by the eccentricity of square dies. The deviated velocity is changed with the distance form the center of cross-section of the workpiece. The results show that the curving of products and the shapes of the dead metal zone are determined by Rigid Plasticity Finite Element Analysis and that the curvature of the extruded products increases with the eccentricity.

  • PDF

Numercal Simulation of Unsteady Performance for 20D Surface Effect Airfoils (2차원 해면효과익의 비정상 성능에 대한 수치적 시뮬레이션)

  • Park, Il-Ryong;Jeon, Ho-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.71-74
    • /
    • 1995
  • A numerical model capable of simulating a 2-D airfoil flying over in the vicinity of the waves is discussed. Instead of treating the problem as a heaving oscillation one above the rigid flat wall, sources are distributed on the prescribed wave profile. The wave deformation due to the airfoil is assumed to be negligible and treated as a rigid undulated wall. The source and vortex are distributed on the surface of the foil. It is found that the variation of $C_L$ with wave steepness in severe and that the lift variation due to waves decreases as the wing height above the water surface increases.

  • PDF

finite Element Modeling of a Hemispherical Asperity Adhesively Contacting the Plane Surface of Semi-Infinite Rigid Body (강체평면에 흉착접촉하는 반구헝돌기의 유한요소모델링)

  • Cho, Sung-San;Park, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2436-2441
    • /
    • 2002
  • Finite element technique considering adhesive forces is proposed and applied to analyze the behavior of elastic hemispherical asperity adhesively contacting the plane surface of semi -infinite rigid body. It is demonstrated that the finite element model simulates interfacial phenomena such as jump -to-contact and adhesion hysteresis that cannot be simulated with the currently available adhesive contact continuum models. This simulation aiso provides valuable information on contact pressure, contact region and stress distributions. This technique is anticipated to be utilized in designing a low-adhesion surface profile for MEMS/NEMS applications since various contact geometries can be analyzed with this technique.

Vibration of Liquid-filled Cylindrical Storage Tank with an Annular Plate Cover (환원판 덮개를 갖는 원통형 연료탱크의 진동해석)

  • 김영완
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.10
    • /
    • pp.751-759
    • /
    • 2003
  • The theoretical method is developed to investigate the vibration characteristics of the sloshing and bulging mode for the circular cylindrical storage tank with an annular plate on free surface. The cylindrical tank is filled with an inviscid and incompressible liquid. The liquid domain is limited by a rigid cylindrical surface and a rigid flat bottom. As the effect of free surface waves Is taken into account in the analysis, the bulging and sloshing modes are studied. The solution for the velocity potential of liquid movement is assumed as a suitable harmonic function that satisfies Laplace equation and the relevant boundary conditions. The Rayleigh-Ritz method is used to derive the frequency equation of the cylindrical tank. The effect of Inner-to-outer radius ratio and thickness of annular plate and liquid volume on vibration characteristics of storage tank is studied. The finite element analysis is performed to demonstrate the validity of present theoretical method.