• Title/Summary/Keyword: resistance change

Search Result 2,416, Processing Time 0.031 seconds

A STUDY ON CHANGE OF COMPRESSIVE STRENGTH AND FLEXURAL STRENGTH OF DENTAL COMPOSITE RESIN AFTER WATER STORAGE (치과용 콤포짓트 레진의 수분 흡수에 따른 압축강도와 굴곡강도의 변화에 관한 연구)

  • Jeong, Nae-Jeong;Kim, Jung-Wook;Lee, Sang-Hoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.1
    • /
    • pp.146-153
    • /
    • 2001
  • The difference of composition of composite resin may affect the mechanical properties of composite resin and the environment is important for the properties of materials. The composite resin restoration is always exposed to fluid in oral cavity and the composite resin matrix is able to absorb water, which is accompanied by some swelling of the composite The uptake of water by composites has been correlated with decreases in surface hardness and wear resistance. The purpose of this study was to investigate the effects of water storage in $37^{\circ}C$ distilled water after 7days, 30days, 60days, 120days on compressive strength and flexural strength of dental composite resin, Z-100(group 1) Spectrum(group 2), Clearfil AP-X(group 3), Pyramid(group 4), Heliomolar(group 5). The compressive and flexural strength were measured by instron machine. The following results were obtained: 1. There were significant reduction of compressive strength as water storage time increased, 7days, 30days, 60 days, 120days(p<0.05). 2. There were significant reduction of flexural strength as water storage time increased, 7days, 30days, 60days, 120days(p<0.05). 3. Group 1, 2, 3 -hybrid type showed higher compressive and flexural strength than group 5-microfine type which had lower filler contents.

  • PDF

ANTICARIOGENIC EFFECT OF FLUORIDE VARNISHES AND CHLORHEXIDINE VARNISHES (불소 바니쉬와 클로르헥시딘 바니쉬의 항우식 효과)

  • Lee, Suk-Hee;Kim, Jae-Moon;Kim, Shin;Jeong, Tae-Sung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.1
    • /
    • pp.83-91
    • /
    • 2008
  • Dental caries which is one of the most common chronic disease complexly developed by the action of oral bacteria, diet, and host factor. Various prevention program enhance resistance of demineralization and reduce the acidogenecity of oral bacteria have been introduced, representative material is fluoride and chlorhexidine. The purpose of the study was to evaluate and compare effectiveness of fluoride varnish and chlorhexidine varnish in vivo. Bovine tooth specimens were implanted in the lower space maintainers and applied with fluoride varnish and chlorhexidine varnish. After seven days in oral environment, metal mesh was covered to make similar condition of plaque accumulation and induce caries. All specimens were analysed by EPMA to evaluate quantitative change of Ca, P and by polarized microscope to identify histological changes. The results were as follows : After initial artificial caries induction in the mouth, there were remarkable enamel caries lesion in the control group under polarized light microscopy. The highest amount of mineral decrease were showed in control group. No statistically significant mineral decrease were showed in fluoride varnish group, while chlorhexidine varnish group showed only significant decrease of P(P<0.05). In conclusion both fluoride varnish and chlorhexidine varnish seemed to be effective for protecting enamel surface from caries activity, although fluoride varnish has more anticariogenic effect than chlorhexidine varnish.

  • PDF

Poly(phenanthrenequinone)-Poly(acrylic acid) Composite as a Conductive Polymer Binder for Submicrometer-Sized Silicon Negative Electrodes (서브마이크로미터 크기의 실리콘 음극용 폴리페난트렌퀴논-폴리아크릴산 전도성 고분자 복합 바인더)

  • Kim, Sang-Mo;Lee, Byeongil;Lee, Jae Gil;Lee, Jeong Beom;Ryu, Ji Heon;Kim, Hyung-Tae;Kim, Young Gyu;Oh, Seung M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.3
    • /
    • pp.87-94
    • /
    • 2016
  • In order to improve performances of submicrometer-sized Si negative electrode which shows larger volumetric change than nano-sized Si, composite binders are introduced by blending between poly(phenanthrenequinone) (PPQ) conductive polymer binder and poly(acrylic acid) (PAA) having good adhesion strength due to its carboxyl functional group. Blending between PPQ and PAA shows an effect that the adhesion strength of the Si electrode with the composite conductive binder is greatly improved after blending and this makes its better stable cycle performance. Blending ratios between PPQ and PAA in this work are 2:1, 1:1, 1:2 (by weight) and the best capacity retention at 50th cycle is observed in the electrode with the blending ratio 2:1 (named QA21). This is because that PPQ plays a role of conductive carbon among the Si particles or between Si particles and Cu current collector and PAA binds effectively the particles and the current collector. According to this synergetic effect, the internal resistance of the Si electrode with the blending ratio 2:1 is the smallest value. In addition, the Si electrode with PPQ-PAA composite binder shows the better stable cycle performance than the electrode with conventional super-P conductive carbon (20 wt.%).

Examination of Color Difference in Elastic Pavement that uses EPDM Chip using Ultraviolet Ray Accelerated Weathering Test (자외선 촉진 내후성 시험에 의한 EPDM Chip을 사용한 탄성포장의 색차분석)

  • Hong, Chang Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1D
    • /
    • pp.91-98
    • /
    • 2011
  • Recently, the usage of elastic paving using EPDM Chip instead of pedestrian sidewalk blocks or permeable concrete used mostly for pedestrian walk, trails and in parks has been increassed as it can absorb impact during walking and produce wide range of colors and designs. However, the properties of EPDM Chip including elasticity and durability are decreased when exposed to ultraviolet ray and scenic paving functions through various colors are lowered due to the yellowing phenomenon. In this study, ultraviolet ray accelerated weathering test has been conducted to analyze the color changes in EPDM Chip and polyurethane resin, which are the main ingredients of elastic paving, when exposed to ultraviolet ray. The color differences are quantitatively analyzed through the color value coordination of the colored space by using the color difference scheme. The experimental results show that the color changes in BL polyurethane resin which is used most frequently at present was larger than that of EPDM Chip. Moreover, the total color difference, ${\Delta}E$, of BC polyurethane resin are 3.162 on the $14^{th}$ day of commencement of acceleration, which is 6 times greater color change resistance against ultraviolet ray than that of BL polyurethane resin with total color difference of 20.639. Therefore, the usage of BC polyurethane resin, which is manufactured to have chain-type molecular structure by using the isocyanate as the HMDI at the time of producing polymer, as binder in elastic paving with EPDM Chip is found to be a highly efficient method of restraining the color changes due to the ultraviolet ray.

Change in Lactobacillus brevis GS1022 and Pediococcus inopinatus GS316 in Gajami Sikhae Fermentation (가자미 식해 발효에서 Lactobacillus brevis GS1022과 Pediococcus inopinatus GS316의 균총 변화 연구)

  • Lim, Soo-Jeong;Bae, Eun-Yeong;Seol, Min-Kyeong;Cho, Young-je;Jung, Hee-Young;Kim, Byung-Oh
    • Journal of Life Science
    • /
    • v.30 no.6
    • /
    • pp.491-500
    • /
    • 2020
  • Lactic acid bacteria are widely known to prevent and treat intestinal health conditions, heart disease, depression, and obesity. In Korea, such bacteria are commonly consumed through various fermented foods, although most are isolated from kimchi, and research on the lactic acid bacteria in fermented seafood is insufficient. This study was therefore conducted to observe changes in bacterial flora according to the culture date of lactic acid bacteria in the fermentation of traditional Korean Gajami Sikhae produced in Pohang and to isolate the bacteria of probiotic value. The bacteria were periodically isolated and identified from date of preparation to 50 days after preparation to investigate which Lactobacillus are involved in Gajami Sikhae. As fermentation progressed, it was confirmed that Pediococcus sp. and Lactobacillus sp. participate predominantly in the early and later periods of fermentation, respectively. During the entire fermentation period, 170 isolates were screened, and the following five species were found to be involved: Pediococcus pentosaceus, Pediococcus inopinatus, Leuconostoc mesenteroides, Lactobacillus brevis, and Lactobacillus plantarum. Five strains of these species were selected through acid and bile tolerance tests, and their coaggregation, autoaggregation, hydrophobicity, antibacterial, and antioxidant activities were then evaluated. As a result, it is thought that L. brevis GS1022, which has excellent digestive fluid resistance, and P. inopinatus GS316, which has excellent cohesiveness, may be useful as probiotic strains.

$17{\beta}$-estradiol Attenuates Renal Fibrosis in Mice with Obstructive Uropathy (폐쇄성 요로병증에서 $17{\beta}$-estradiol에 의한 신섬유화 감소 효과에 대한 연구)

  • Cho, Min-Hyun;Jang, Hee-Seong;Jung, Kyung-Jin;Park, Kwon-Moo
    • Childhood Kidney Diseases
    • /
    • v.15 no.2
    • /
    • pp.125-137
    • /
    • 2011
  • Purpose : Men are generally more prone to chronic renal disease and progression to end stage renal disease than women. The purpose of this study is to prove the effect of gender and sex hormone on renal fibrosis in mice with unilateral ureteral obstruction (UUO) and to elucidate the specific underlying mechanisms. Methods :We compared the expression of ${\alpha}$-smooth muscle actin (${\alpha}$-SMA) in female and male mice with complete UUO (day 7). After this, we estimated the changes of renal fibrosis in the female mice with oophorectomy and in the female mice with oophorectomy and replacement of $17{\beta}$-estradiol, respectively. Results : The level of ${\alpha}$-SMA in the female kidney with UUO was significantly lower than that in the male kidney with UUO. oophorectomy and replacement of $17{\beta}$-estradiol did not change the expression of angiotensin II type 1 (AT1) receptor in the female kidney with UUO, whereas the expression of angiotensin II type 2 (AT2) receptor was significantly more elevated in the intact female (IF) and the oophorectomized female with estrogen (OF+E) than that in the oophorectomized female (OF). The expressions of inducible nitric oxide synthase (iNOS) in the IF and OF+E mice were significantly more elevated than that in the OF mice, which was similar to the expression of AT2 receptor. Conclusion : The female gender is associated with resistance to renal fibrosis in obstructive uropathy and this gender difference may originate from the existence of $17{\beta}$-estradiol, which has an anti-fibrotic effect via upregulation of the AT2 receptor and iNOS.

Manufacturing and Characteristics of Korean Traditional Liquor, Hahyangju Prepared by Saccharomyces cerevisiae HA3 Isolated from Traditional Nuruk (전통 누룩으로부터 분리된 Saccharomyces cerevisiae HA3을 이용한 하향주의 제조 및 특성)

  • Jung, Hee-Kyoung;Park, Chi-Duck;Park, Hwan-Hee;Lee, Gee-Dong;Lee, In-Seon;Hong, Joo-Heon
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.5
    • /
    • pp.659-667
    • /
    • 2006
  • In order to standardize the manufacturing processes of Hahyangju, a traditional Korean liquor, 29 yeast strains were isolated from traditional Nuruk. Strain N8 exhibited a particularly strong resistance to sugar. Strains HA2, HA3 and HA4 grew successfully in medium containing 10% ethanol. In comparison with the growth exhibited by these strains when grown in a yeast malt extract medium, the ethanol production rates for the three strains were 10.8%, 10.45%, and 10%, respectively in a yeast malt extract medium containing 25% glucose. Based on these results, HA3 was the strain selected for use in the manufacturing processes of Hahyangju and it was identified as a Saccharomyces cerevisiae strain with 97% ITS sequence similarity. The use of Saccharomyces cerevisiae HA3 causcd a decrease in the lactic acid content, acidity and growth of lactic acid bacteria in the fermentation mash. Following thc addition of Saccharomyces cerevisiae HA3 to the manufacturing process of Hahyangju, the second fermentation mash showed a 22% increase in the alcohol production rate associated with traditional fermentation; however, the amino acidity, pH and reducing sugar content showed little change. Sensory evaluation of Hahyangju fermented with S. cerevisiae HA3 also showed better scores than Hahyangju mashed by the traditional method.

Preparation of diffusion dialysis membrane for acid recovery via a phase-inversion method

  • Khan, Muhammad Imran;Wu, Liang;Hossain, Md. Masem;Pan, Jiefeng;Ran, Jin;Mondal, Abhishek N.;Xu, Tongwen
    • Membrane and Water Treatment
    • /
    • v.6 no.5
    • /
    • pp.365-378
    • /
    • 2015
  • Herein, the preparation of anion exchange membrane (AEM) from brominated poly(2,6-dimethyl 1,6-phenylene oxide) BPPO and dimethylaniline (DMA) by phase-inversion process is reported. Anion exchange membranes (AEMs) are prepared by varying the DMA contents. Prepared AEMs show high thermal stability, water uptake (WR) around 202% to 226%, dimensional change ratios of 1.5% to 2.6% and ion exchange capacities (IECs) of 0.34 mmol/g to 0.82 mmol/g with contact angle of $59.18^{\circ}$ to $65.15^{\circ}$. These membranes are porous in nature as confirmed by SEM observation. The porous property of membranes are important as it could reduce the resistance of transportation of ions across the membranes. They have been used in diffusion dialysis (DD) process for recovery of hydrochloric acid (HCl) from the mixture of HCl and ferrous chloride ($FeCl_2$). Presence of $-N+(CH_3)_2C_6H_5Br^-$ as a functional group in membrane matrix facilitates its applications in DD process. The dialysis coefficients of hydrochloric acid ($U_H$) of the membranes are in range of 0.0016 m/h to 0.14 m/h and the separation factors (S) are in range of 2.09 to 7.32 in the $HCl/FeCl_2$ system at room temperature. The porous membrane structure and presence of amine functional group are responsible for the mechanism of diffusion dialysis (DD).

Utilizing chromosome segment substitution lines (CSSLs) to evaluate developmental plasticity of root systems in hardpan penetration and deep rooting triggered by soil moisture fluctuations in rice

  • Nguyen, Thi Ngoc Dinh;Suralta, Roel R.;Mana, Kano-Nakata;Mitsuya, Shiro;Stella, Owusu Nketia;Kabuki, Takuya;Yamauchi, Akira
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.321-321
    • /
    • 2017
  • Water availability in rainfed lowlands (RFL) is strongly affected by climate change. In RFL, rice plants are exposed to soil moisture fluctuations (SMF) but rarely to simple progressive drought as widely believed. Typical RFL field is characterized by a about 5-cm thick high bulk density hardpan layer underneath the cultivated layer at about 20 cm depth that impedes deep root development. Root system has the ability to develop in response to changes in SMF, known as phenotypic plasticity. We hypothesized that genotypes that can adapt to RFL have root plasticity. The roots can sharply respond to re-wetting after drought period and thus penetrate the hardpan layer when the hardpan is wet and so becomes relatively soft, and thus access water under the hardpan. This study aimed to identify CSSLs derived from a cross between Sasanishiki and Habataki which adapted to such RFL conditions. We used 39 CSSLs together with the parent Sasanishiki, which were grown in hydroponics and pot under transient soil moisture stresses (drought and then rewatering), and compared with continuously well-watered (WW) (control) up to 14 days after sowing (DAS), and 20 DAS, respectively. Based on the results of hydroponics and pot experiments, we selected a few lines, which were grown in the soil-filled rootbox with artificial hardpan layer and without artificial hardpan. For the rootbox without artificial hardpan, plants were grown under WW and transient soil moisture stresses for 49 DAS. While the rootbox with artificial hardpan, the plants were grown under WW (control) and SMF (WW up to 21 DAS, 1st drought (22-36 DAS), rewatering (37-44 DAS), and followed by 2nd drought (45-58 DAS)). Among the 39 CSSLs, only CSSL439 (SL39) consistently showed significantly higher shoot dry weight (SDW) than Sasanishiki under transient soil moisture stress conditions as well as SMF conditions in all the experiments. Furthermore, under WW, SL39 consistently showed no significant differences from Sasanishiki in shoot and root growth in most of traits examined. SL39 showed significantly greater total root length (TRL) than Sasanishiki under transient soil moisture stress, which is considered as phenotypic plasticity in response to rewatering after drought period. Such plastic root development was the key trait that effectively contributed to root elongation and branching during the rewatering period and consequently enhanced the root to penetrate hardpan layer when the soil penetration resistance at hardpan layer reduced. In addition, using the rootbox with artificial hardpan layer ($1.7g\;cm^{-3}$, heavily compacted), SL39 showed greater root system development than Sasanishiki under SMF, which was expressed in its significantly higher TRL, total nodal RL, and total lateral RL at hardpan layer as well as at below the hardpan layer. These results prove that SL39 has plasticity that enables its root systems to penetrate hardpan layer in response to rewatering. Under SMF, such root plasticity contributed to its higher gs and Pn.

  • PDF

Growth and yield responses of rice varieties to various soil water deficit conditions under different soil types

  • Kikuta, Mayumi;Samejima, Hiroaki;Magoti, Rahab;Kimani, John M.;Yamauchi, Akira;Makihara, Daigo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.322-322
    • /
    • 2017
  • To avoid drought stress under rainfed upland conditions, it is important for rice to efficiently utilize water at shallow soil layers supplied by rainfall, and access to water retained in deer soil layers. The root developmental characteristics of rice, which play important role in the adaptability to drought conditions, vary depending on the variety. Moreover, water availability for plant differs depending on the soil types that have different physical properties such as water holding capacity, permeability, capillary force, penetration resistance, etc. In this study, we evaluated growth and yield responses of rice varieties to various soil water deficit conditions under three different soil types. The experiment was conducted in a plastic greenhouse at the Kenya Agricultural and Livestock Research Organization-Mwea from October 2016 to January 2017. Two upland varieties (NERICA 1 and 4) and one lowland variety (Komboka) were grown in handmade PVC pots (15.2 cm diameter and 85.0 cm height) filled with three different types of soil collected from major rice-growing areas of the country, namely black cotton (BC), red clay (RC), and sandy clay (SC). Three watering methods, 1) supplying water only from the soil surface (W1), 2) supplying water only from the bottom of the pots (W2), and 3) supplying water both from the soil surface and the bottom of pots (W3), were imposed from 40 days after sowing to maturity. Soil water content (SWC) at 20, 40, and 60 cm depths was measured regularly. At the harvesting stage, aboveground and root samples were collected to determine total dry weight (TDW), grain yield, and root length at 0-20, 20-40, 40-60, and 60-80 cm soil layers. Irrespective of the watering methods, the greatest root development was obtained in RC, while that in BC was less than other two soils. In BC, the degree of yield reduction under W1 was less than that in RC and SC, which could be attributed to the higher water holding capacity of BC. In RC, the growth and yield reduction observed in all varieties under W1 was attributed to the severe drought stress. On the other hand, under W2, SWC at the shallow soil depth in RC was maintained because of its higher capillary force compared with BC and SC. As the result, growths and yields in RC were not suppressed under W2. In SC, deep root development was not promoted by W2 irrespective of the varieties, which resulted in significant yield losses. Under W1, the rice growth and yield in SC was decreased although shallow root development was enhanced, and the stomatal conductance was maintained higher than RC. It was suspected that W1 caused nutrients leaching in SC because of its higher permeability. Under rainfed conditions, growth and yield of rice can be strongly affected by soil types because dynamics of soil water conditions change according to soil physical properties.

  • PDF